tf.compat.v1.nn.rnn_cell.BasicLSTMCell
Stay organized with collections
Save and categorize content based on your preferences.
DEPRECATED: Please use tf.compat.v1.nn.rnn_cell.LSTMCell
instead.
Inherits From: RNNCell
, Layer
, Layer
, Module
tf.compat.v1.nn.rnn_cell.BasicLSTMCell(
num_units, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None,
name=None, dtype=None, **kwargs
)
Basic LSTM recurrent network cell.
The implementation is based on
We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.
It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.
For advanced models, please use the full tf.compat.v1.nn.rnn_cell.LSTMCell
that follows.
Note that this cell is not optimized for performance. Please use
tf.contrib.cudnn_rnn.CudnnLSTM
for better performance on GPU, or
tf.contrib.rnn.LSTMBlockCell
and tf.contrib.rnn.LSTMBlockFusedCell
for
better performance on CPU.
Args |
num_units
|
int, The number of units in the LSTM cell.
|
forget_bias
|
float, The bias added to forget gates (see above). Must set
to 0.0 manually when restoring from CudnnLSTM-trained checkpoints.
|
state_is_tuple
|
If True, accepted and returned states are 2-tuples of the
c_state and m_state . If False, they are concatenated along the
column axis. The latter behavior will soon be deprecated.
|
activation
|
Activation function of the inner states. Default: tanh . It
could also be string that is within Keras activation function names.
|
reuse
|
(optional) Python boolean describing whether to reuse variables in
an existing scope. If not True , and the existing scope already has
the given variables, an error is raised.
|
name
|
String, the name of the layer. Layers with the same name will share
weights, but to avoid mistakes we require reuse=True in such cases.
|
dtype
|
Default dtype of the layer (default of None means use the type of
the first input). Required when build is called before call .
|
**kwargs
|
Dict, keyword named properties for common layer attributes, like
trainable etc when constructing the cell from configs of get_config().
When restoring from CudnnLSTM-trained checkpoints, must use
CudnnCompatibleLSTMCell instead.
|
Attributes |
graph
|
|
output_size
|
Integer or TensorShape: size of outputs produced by this cell.
|
scope_name
|
|
state_size
|
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
|
Methods
get_initial_state
View source
get_initial_state(
inputs=None, batch_size=None, dtype=None
)
zero_state
View source
zero_state(
batch_size, dtype
)
Return zero-filled state tensor(s).
Args |
batch_size
|
int, float, or unit Tensor representing the batch size.
|
dtype
|
the data type to use for the state.
|
Returns |
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size, s] for each s in state_size .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[],null,["# tf.compat.v1.nn.rnn_cell.BasicLSTMCell\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/layers/legacy_rnn/rnn_cell_impl.py#L648-L814) |\n\nDEPRECATED: Please use [`tf.compat.v1.nn.rnn_cell.LSTMCell`](../../../../../tf/compat/v1/nn/rnn_cell/LSTMCell) instead.\n\nInherits From: [`RNNCell`](../../../../../tf/compat/v1/nn/rnn_cell/RNNCell), [`Layer`](../../../../../tf/compat/v1/layers/Layer), [`Layer`](../../../../../tf/keras/layers/Layer), [`Module`](../../../../../tf/Module) \n\n tf.compat.v1.nn.rnn_cell.BasicLSTMCell(\n num_units, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None,\n name=None, dtype=None, **kwargs\n )\n\nBasic LSTM recurrent network cell.\n\nThe implementation is based on\n\nWe add forget_bias (default: 1) to the biases of the forget gate in order to\nreduce the scale of forgetting in the beginning of the training.\n\nIt does not allow cell clipping, a projection layer, and does not\nuse peep-hole connections: it is the basic baseline.\n\nFor advanced models, please use the full [`tf.compat.v1.nn.rnn_cell.LSTMCell`](../../../../../tf/compat/v1/nn/rnn_cell/LSTMCell)\nthat follows.\n\nNote that this cell is not optimized for performance. Please use\n`tf.contrib.cudnn_rnn.CudnnLSTM` for better performance on GPU, or\n`tf.contrib.rnn.LSTMBlockCell` and `tf.contrib.rnn.LSTMBlockFusedCell` for\nbetter performance on CPU.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `num_units` | int, The number of units in the LSTM cell. |\n| `forget_bias` | float, The bias added to forget gates (see above). Must set to `0.0` manually when restoring from CudnnLSTM-trained checkpoints. |\n| `state_is_tuple` | If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. |\n| `activation` | Activation function of the inner states. Default: `tanh`. It could also be string that is within Keras activation function names. |\n| `reuse` | (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. |\n| `name` | String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. |\n| `dtype` | Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. |\n| `**kwargs` | Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). When restoring from CudnnLSTM-trained checkpoints, must use `CudnnCompatibleLSTMCell` instead. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------|------------------------------------------------------------------------------------------------------------------------------------------|\n| `graph` | \u003cbr /\u003e \u003cbr /\u003e |\n| `output_size` | Integer or TensorShape: size of outputs produced by this cell. |\n| `scope_name` | \u003cbr /\u003e \u003cbr /\u003e |\n| `state_size` | size(s) of state(s) used by this cell. \u003cbr /\u003e It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `get_initial_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/layers/legacy_rnn/rnn_cell_impl.py#L284-L312) \n\n get_initial_state(\n inputs=None, batch_size=None, dtype=None\n )\n\n### `zero_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/layers/legacy_rnn/rnn_cell_impl.py#L314-L343) \n\n zero_state(\n batch_size, dtype\n )\n\nReturn zero-filled state tensor(s).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|--------------|---------------------------------------------------------|\n| `batch_size` | int, float, or unit Tensor representing the batch size. |\n| `dtype` | the data type to use for the state. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| If `state_size` is an int or TensorShape, then the return value is a `N-D` tensor of shape `[batch_size, state_size]` filled with zeros. \u003cbr /\u003e If `state_size` is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of `2-D` tensors with the shapes `[batch_size, s]` for each s in `state_size`. ||\n\n\u003cbr /\u003e"]]