Bidirectional wrapper for RNNs.
Inherits From: Wrapper, Layer, Module
tf.keras.layers.Bidirectional(
    layer, merge_mode='concat', weights=None, backward_layer=None,
    **kwargs
)
Arguments | 
layer
 | 
keras.layers.RNN instance, such as keras.layers.LSTM or
keras.layers.GRU. It could also be a keras.layers.Layer instance
that meets the following criteria:
- Be a sequence-processing layer (accepts 3D+ inputs).
 
- Have a 
go_backwards, return_sequences and return_state
attribute (with the same semantics as for the RNN class). 
- Have an 
input_spec attribute. 
- Implement serialization via 
get_config() and from_config().
Note that the recommended way to create new RNN layers is to write a
custom RNN cell and use it with keras.layers.RNN, instead of
subclassing keras.layers.Layer directly.
   | 
merge_mode
 | 
Mode by which outputs of the forward and backward RNNs will be
combined. One of {'sum', 'mul', 'concat', 'ave', None}. If None, the
outputs will not be combined, they will be returned as a list. Default
value is 'concat'.
 | 
backward_layer
 | 
Optional keras.layers.RNN, or keras.layers.Layer
instance to be used to handle backwards input processing.
If backward_layer is not provided, the layer instance passed as the
layer argument will be used to generate the backward layer
automatically.
Note that the provided backward_layer layer should have properties
matching those of the layer argument, in particular it should have the
same values for stateful, return_states, return_sequence, etc.
In addition, backward_layer and layer should have different
go_backwards argument values.
A ValueError will be raised if these requirements are not met.
 | 
Call arguments:
The call arguments for this layer are the same as those of the wrapped RNN
  layer.
Beware that when passing the initial_state argument during the call of
this layer, the first half in the list of elements in the initial_state
list will be passed to the forward RNN call and the last half in the list
of elements will be passed to the backward RNN call.
Raises | 
ValueError
 | 
- If 
layer or backward_layer is not a Layer instance. 
- In case of invalid 
merge_mode argument. 
- If 
backward_layer has mismatched properties compared to layer.
   | 
Examples:
model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
 # With custom backward layer
 model = Sequential()
 forward_layer = LSTM(10, return_sequences=True)
 backward_layer = LSTM(10, activation='relu', return_sequences=True,
                       go_backwards=True)
 model.add(Bidirectional(forward_layer, backward_layer=backward_layer,
                         input_shape=(5, 10)))
 model.add(Dense(5))
 model.add(Activation('softmax'))
 model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
Methods
reset_states
View source
reset_states()