TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Optimizer that implements the Adagrad algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Adagrad(
    learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,
    name='Adagrad', **kwargs
)
Adagrad is an optimizer with parameter-specific learning rates, which are adapted relative to how frequently a parameter gets updated during training. The more updates a parameter receives, the smaller the updates.
Args | |
|---|---|
learning_rate
 | 
A Tensor, floating point value, or a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule. The learning rate.
 | 
initial_accumulator_value
 | 
A floating point value. Starting value for the accumulators, must be non-negative. | 
epsilon
 | 
A small floating point value to avoid zero denominator. | 
name
 | 
Optional name prefix for the operations created when applying
gradients.  Defaults to "Adagrad".
 | 
**kwargs
 | 
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue".
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
 | 
Reference:
Raises | |
|---|---|
ValueError
 | 
in case of any invalid argument. | 
  TensorFlow 1 version
    View source on GitHub