tf.keras.losses.categorical_crossentropy
Computes the categorical crossentropy loss.
tf.keras.losses.categorical_crossentropy(
y_true, y_pred, from_logits=False, label_smoothing=0
)
Standalone usage:
y_true = [[0, 1, 0], [0, 0, 1]]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss.numpy()
array([0.0513, 2.303], dtype=float32)
Args |
y_true
|
Tensor of one-hot true targets.
|
y_pred
|
Tensor of predicted targets.
|
from_logits
|
Whether y_pred is expected to be a logits tensor. By default,
we assume that y_pred encodes a probability distribution.
|
label_smoothing
|
Float in [0, 1]. If > 0 then smooth the labels.
|
Returns |
Categorical crossentropy loss value.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[]]