TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Depthwise separable 2D convolution.
Inherits From: Conv2D, Layer, Module
tf.keras.layers.DepthwiseConv2D(
    kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,
    data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True,
    depthwise_initializer='glorot_uniform',
    bias_initializer='zeros', depthwise_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None,
    bias_constraint=None, **kwargs
)
Depthwise Separable convolutions consist of performing
just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
The depth_multiplier argument controls how many
output channels are generated per input channel in the depthwise step.
Arguments | |
|---|---|
kernel_size
 | 
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
strides
 | 
An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate value != 1.
 | 
padding
 | 
one of 'valid' or 'same' (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
 | 
depth_multiplier
 | 
The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier.
 | 
data_format
 | 
A string,
one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch_size, height, width, channels) while channels_first
corresponds to inputs with shape
(batch_size, channels, height, width).
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json.
If you never set it, then it will be 'channels_last'.
 | 
dilation_rate
 | 
An integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any dilation_rate value != 1 is
incompatible with specifying any strides value != 1.
 | 
activation
 | 
Activation function to use.
If you don't specify anything, no activation is applied (
see keras.activations).
 | 
use_bias
 | 
Boolean, whether the layer uses a bias vector. | 
depthwise_initializer
 | 
Initializer for the depthwise kernel matrix (
see keras.initializers).
 | 
bias_initializer
 | 
Initializer for the bias vector (
see keras.initializers).
 | 
depthwise_regularizer
 | 
Regularizer function applied to
the depthwise kernel matrix (see keras.regularizers).
 | 
bias_regularizer
 | 
Regularizer function applied to the bias vector (
see keras.regularizers).
 | 
activity_regularizer
 | 
Regularizer function applied to
the output of the layer (its 'activation') (
see keras.regularizers).
 | 
depthwise_constraint
 | 
Constraint function applied to
the depthwise kernel matrix (
see keras.constraints).
 | 
bias_constraint
 | 
Constraint function applied to the bias vector (
see keras.constraints).
 | 
Input shape:
4D tensor with shape:
[batch_size, channels, rows, cols] if data_format='channels_first'
or 4D tensor with shape:
[batch_size, rows, cols, channels] if data_format='channels_last'.
Output shape:
4D tensor with shape:
[batch_size, filters, new_rows, new_cols] if data_format='channels_first'
or 4D tensor with shape:
[batch_size, new_rows, new_cols, filters] if data_format='channels_last'.
rows and cols values might have changed due to padding.
Returns | |
|---|---|
A tensor of rank 4 representing
activation(depthwiseconv2d(inputs, kernel) + bias).
 | 
Raises | |
|---|---|
ValueError
 | 
if padding is "causal".
 | 
ValueError
 | 
when both strides > 1 and dilation_rate > 1.
 | 
  TensorFlow 1 version
    View source on GitHub