tf.quantization.fake_quant_with_min_max_vars_gradient
Compute gradients for a FakeQuantWithMinMaxVars operation.
tf.quantization.fake_quant_with_min_max_vars_gradient(
gradients, inputs, min, max, num_bits=8, narrow_range=False, name=None
)
Args |
gradients
|
A Tensor of type float32 .
Backpropagated gradients above the FakeQuantWithMinMaxVars operation.
|
inputs
|
A Tensor of type float32 .
Values passed as inputs to the FakeQuantWithMinMaxVars operation.
min, max: Quantization interval, scalar floats.
|
min
|
A Tensor of type float32 .
|
max
|
A Tensor of type float32 .
|
num_bits
|
An optional int . Defaults to 8 .
The bitwidth of the quantization; between 2 and 8, inclusive.
|
narrow_range
|
An optional bool . Defaults to False .
Whether to quantize into 2^num_bits - 1 distinct values.
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max).
|
backprops_wrt_input
|
A Tensor of type float32 .
|
backprop_wrt_min
|
A Tensor of type float32 .
|
backprop_wrt_max
|
A Tensor of type float32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[]]