TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Max pooling operation for 1D temporal data.
tf.keras.layers.MaxPool1D(
    pool_size=2, strides=None, padding='valid',
    data_format='channels_last', **kwargs
)
Downsamples the input representation by taking the maximum value over the
window defined by pool_size. The window is shifted by strides.  The
resulting output when using "valid" padding option has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is:
output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,strides=1, padding='valid')max_pool_1d(x)<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=array([[[2.],[3.],[4.],[5.]]], dtype=float32)>
For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,strides=2, padding='valid')max_pool_1d(x)<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=array([[[2.],[4.]]], dtype=float32)>
For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,strides=1, padding='same')max_pool_1d(x)<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[2.],[3.],[4.],[5.],[5.]]], dtype=float32)>
Arguments | |
|---|---|
pool_size
 | 
Integer, size of the max pooling window. | 
strides
 | 
Integer, or None. Specifies how much the pooling window moves
for each pooling step.
If None, it will default to pool_size.
 | 
padding
 | 
One of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to 
the left/right or up/down of the input such that output has the same 
height/width dimension as the input.
 | 
data_format
 | 
A string,
one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps).
 | 
Input shape:
- If 
data_format='channels_last': 3D tensor with shape(batch_size, steps, features). - If 
data_format='channels_first': 3D tensor with shape(batch_size, features, steps). 
Output shape:
- If 
data_format='channels_last': 3D tensor with shape(batch_size, downsampled_steps, features). - If 
data_format='channels_first': 3D tensor with shape(batch_size, features, downsampled_steps). 
  TensorFlow 1 version
    View source on GitHub