Load proximal Adagrad embedding parameters with debug support.
tf.raw_ops.LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug(
    parameters, accumulators, gradient_accumulators, num_shards, shard_id,
    table_id=-1, table_name='', config='', name=None
)
An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to install parameters that are loaded from a checkpoint before a training loop is executed.
Args | |
|---|---|
parameters
 | 
A Tensor of type float32.
Value of parameters used in the proximal Adagrad optimization algorithm.
 | 
accumulators
 | 
A Tensor of type float32.
Value of accumulators used in the proximal Adagrad optimization algorithm.
 | 
gradient_accumulators
 | 
A Tensor of type float32.
Value of gradient_accumulators used in the proximal Adagrad optimization algorithm.
 | 
num_shards
 | 
An int.
 | 
shard_id
 | 
An int.
 | 
table_id
 | 
An optional int. Defaults to -1.
 | 
table_name
 | 
An optional string. Defaults to "".
 | 
config
 | 
An optional string. Defaults to "".
 | 
name
 | 
A name for the operation (optional). | 
Returns | |
|---|---|
| The created Operation. |