TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Represents the type of the elements in a Tensor.
tf.dtypes.DType()
The following DType objects are defined:
tf.float16: 16-bit half-precision floating-point.tf.float32: 32-bit single-precision floating-point.tf.float64: 64-bit double-precision floating-point.tf.bfloat16: 16-bit truncated floating-point.tf.complex64: 64-bit single-precision complex.tf.complex128: 128-bit double-precision complex.tf.int8: 8-bit signed integer.tf.uint8: 8-bit unsigned integer.tf.uint16: 16-bit unsigned integer.tf.uint32: 32-bit unsigned integer.tf.uint64: 64-bit unsigned integer.tf.int16: 16-bit signed integer.tf.int32: 32-bit signed integer.tf.int64: 64-bit signed integer.tf.bool: Boolean.tf.string: String.tf.qint8: Quantized 8-bit signed integer.tf.quint8: Quantized 8-bit unsigned integer.tf.qint16: Quantized 16-bit signed integer.tf.quint16: Quantized 16-bit unsigned integer.tf.qint32: Quantized 32-bit signed integer.tf.resource: Handle to a mutable resource.tf.variant: Values of arbitrary types.
The tf.as_dtype() function converts numpy types and string type
names to a DType object.
Attributes | |
|---|---|
as_datatype_enum
 | 
Returns a types_pb2.DataType enum value based on this data type.
 | 
as_numpy_dtype
 | 
Returns a Python type object based on this DType.
 | 
base_dtype
 | 
Returns a non-reference DType based on this DType.
 | 
is_bool
 | 
Returns whether this is a boolean data type. | 
is_complex
 | 
Returns whether this is a complex floating point type. | 
is_floating
 | 
Returns whether this is a (non-quantized, real) floating point type. | 
is_integer
 | 
Returns whether this is a (non-quantized) integer type. | 
is_numpy_compatible
 | 
Returns whether this data type has a compatible NumPy data type. | 
is_quantized
 | 
Returns whether this is a quantized data type. | 
is_unsigned
 | 
Returns whether this type is unsigned.
 Non-numeric, unordered, and quantized types are not considered unsigned, and
this function returns   | 
limits
 | 
Return intensity limits, i.e.
 (min, max) tuple, of the dtype. Args: clip_negative : bool, optional If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values. Returns min, max : tuple Lower and upper intensity limits.  | 
max
 | 
Returns the maximum representable value in this data type. | 
min
 | 
Returns the minimum representable value in this data type. | 
name
 | 
|
real_dtype
 | 
Returns the DType corresponding to this DType's real part.
 | 
size
 | 
|
Methods
is_compatible_with
is_compatible_with(
    other
)
Returns True if the other DType will be converted to this DType.
The conversion rules are as follows:
DType(T)       .is_compatible_with(DType(T))        == True
| Args | |
|---|---|
other
 | 
A DType (or object that may be converted to a DType).
 | 
| Returns | |
|---|---|
True if a Tensor of the other DType will be implicitly converted to
this DType.
 | 
__eq__
__eq__(
    other
)
Returns True iff this DType refers to the same type as other.
__ne__
__ne__(
    other
)
Returns True iff self != other.
  TensorFlow 1 version
    View source on GitHub