tf.keras.layers.AveragePooling1D
Average pooling for temporal data.
Inherits From: Layer
, Module
tf.keras.layers.AveragePooling1D(
pool_size=2, strides=None, padding='valid',
data_format='channels_last', **kwargs
)
Arguments |
pool_size
|
Integer, size of the average pooling windows.
|
strides
|
Integer, or None. Factor by which to downscale.
E.g. 2 will halve the input.
If None, it will default to pool_size .
|
padding
|
One of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
- If
data_format='channels_last'
:
3D tensor with shape (batch_size, steps, features)
.
- If
data_format='channels_first'
:
3D tensor with shape (batch_size, features, steps)
.
Output shape:
- If
data_format='channels_last'
:
3D tensor with shape (batch_size, downsampled_steps, features)
.
- If
data_format='channels_first'
:
3D tensor with shape (batch_size, features, downsampled_steps)
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[]]