View source on GitHub
  
 | 
Optimization parameters for Adam with TPU embeddings.
tf.compat.v1.tpu.experimental.AdamParameters(
    learning_rate: float,
    beta1: float = 0.9,
    beta2: float = 0.999,
    epsilon: float = 1e-08,
    lazy_adam: bool = True,
    sum_inside_sqrt: bool = True,
    use_gradient_accumulation: bool = True,
    clip_weight_min: Optional[float] = None,
    clip_weight_max: Optional[float] = None,
    weight_decay_factor: Optional[float] = None,
    multiply_weight_decay_factor_by_learning_rate: Optional[bool] = None,
    clip_gradient_min: Optional[float] = None,
    clip_gradient_max: Optional[float] = None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the
optimization_parameters argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=tf.tpu.experimental.AdamParameters(0.1),
        ...))
Args | |
|---|---|
learning_rate
 | 
a floating point value. The learning rate. | 
beta1
 | 
A float value. The exponential decay rate for the 1st moment estimates. | 
beta2
 | 
A float value. The exponential decay rate for the 2nd moment estimates. | 
epsilon
 | 
A small constant for numerical stability. | 
lazy_adam
 | 
Use lazy Adam instead of Adam. Lazy Adam trains faster.
Please see optimization_parameters.proto for details.
 | 
sum_inside_sqrt
 | 
This improves training speed. Please see
optimization_parameters.proto for details.
 | 
use_gradient_accumulation
 | 
setting this to False makes embedding
gradients calculation less accurate but faster. Please see
optimization_parameters.proto for details.
for details.
 | 
clip_weight_min
 | 
the minimum value to clip by; None means -infinity. | 
clip_weight_max
 | 
the maximum value to clip by; None means +infinity. | 
weight_decay_factor
 | 
amount of weight decay to apply; None means that the weights are not decayed. | 
multiply_weight_decay_factor_by_learning_rate
 | 
if true,
weight_decay_factor is multiplied by the current learning rate.
 | 
clip_gradient_min
 | 
the minimum value to clip by; None means -infinity. | 
clip_gradient_max
 | 
the maximum value to clip by; None means +infinity. | 
    View source on GitHub