tf.keras.applications.resnet.preprocess_input
Preprocesses a tensor or Numpy array encoding a batch of images.
tf.keras.applications.resnet.preprocess_input(
x, data_format=None
)
Usage example with applications.MobileNet
:
i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)
x = tf.cast(i, tf.float32)
x = tf.keras.applications.mobilenet.preprocess_input(x)
core = tf.keras.applications.MobileNet()
x = core(x)
model = tf.keras.Model(inputs=[i], outputs=[x])
image = tf.image.decode_png(tf.io.read_file('file.png'))
result = model(image)
Arguments |
x
|
A floating point numpy.array or a tf.Tensor , 3D or 4D with 3 color
channels, with values in the range [0, 255].
The preprocessed data are written over the input data
if the data types are compatible. To avoid this
behaviour, numpy.copy(x) can be used.
|
data_format
|
Optional data format of the image tensor/array. Defaults to
None, in which case the global setting
tf.keras.backend.image_data_format() is used (unless you changed it,
it defaults to "channels_last").
|
Returns |
Preprocessed numpy.array or a tf.Tensor with type float32 .
The images are converted from RGB to BGR, then each color channel is
zero-centered with respect to the ImageNet dataset, without scaling.
|
Raises |
ValueError
|
In case of unknown data_format argument.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[]]