TensorFlow 1 version
|
View source on GitHub
|
Dot-product attention layer, a.k.a. Luong-style attention.
tf.keras.layers.Attention(
use_scale=False, **kwargs
)
Inputs are query tensor of shape [batch_size, Tq, dim], value tensor of
shape [batch_size, Tv, dim] and key tensor of shape
[batch_size, Tv, dim]. The calculation follows the steps:
- Calculate scores with shape
[batch_size, Tq, Tv]as aquery-keydot product:scores = tf.matmul(query, key, transpose_b=True). - Use scores to calculate a distribution with shape
[batch_size, Tq, Tv]:distribution = tf.nn.softmax(scores). - Use
distributionto create a linear combination ofvaluewith shape[batch_size, Tq, dim]:return tf.matmul(distribution, value).
Args | |
|---|---|
use_scale
|
If True, will create a scalar variable to scale the attention
scores.
|
causal
|
Boolean. Set to True for decoder self-attention. Adds a mask such
that position i cannot attend to positions j > i. This prevents the
flow of information from the future towards the past.
|
dropout
|
Float between 0 and 1. Fraction of the units to drop for the attention scores. |
Call Arguments:
inputs: List of the following tensors:- query: Query
Tensorof shape[batch_size, Tq, dim]. - value: Value
Tensorof shape[batch_size, Tv, dim]. - key: Optional key
Tensorof shape[batch_size, Tv, dim]. If not given, will usevaluefor bothkeyandvalue, which is the most common case.
- query: Query
mask: List of the following tensors:- query_mask: A boolean mask
Tensorof shape[batch_size, Tq]. If given, the output will be zero at the positions wheremask==False. - value_mask: A boolean mask
Tensorof shape[batch_size, Tv]. If given, will apply the mask such that values at positions wheremask==Falsedo not contribute to the result.
- query_mask: A boolean mask
return_attention_scores: bool, itTrue, returns the attention scores (after masking and softmax) as an additional output argument.training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (no dropout).
Output:
Attention outputs of shape [batch_size, Tq, dim].
[Optional] Attention scores after masking and softmax with shape
[batch_size, Tq, Tv].
The meaning of query, value and key depend on the application. In the
case of text similarity, for example, query is the sequence embeddings of
the first piece of text and value is the sequence embeddings of the second
piece of text. key is usually the same tensor as value.
Here is a code example for using Attention in a CNN+Attention network:
# Variable-length int sequences.
query_input = tf.keras.Input(shape=(None,), dtype='int32')
value_input = tf.keras.Input(shape=(None,), dtype='int32')
# Embedding lookup.
token_embedding = tf.keras.layers.Embedding(input_dim=1000, output_dim=64)
# Query embeddings of shape [batch_size, Tq, dimension].
query_embeddings = token_embedding(query_input)
# Value embeddings of shape [batch_size, Tv, dimension].
value_embeddings = token_embedding(value_input)
# CNN layer.
cnn_layer = tf.keras.layers.Conv1D(
filters=100,
kernel_size=4,
# Use 'same' padding so outputs have the same shape as inputs.
padding='same')
# Query encoding of shape [batch_size, Tq, filters].
query_seq_encoding = cnn_layer(query_embeddings)
# Value encoding of shape [batch_size, Tv, filters].
value_seq_encoding = cnn_layer(value_embeddings)
# Query-value attention of shape [batch_size, Tq, filters].
query_value_attention_seq = tf.keras.layers.Attention()(
[query_seq_encoding, value_seq_encoding])
# Reduce over the sequence axis to produce encodings of shape
# [batch_size, filters].
query_encoding = tf.keras.layers.GlobalAveragePooling1D()(
query_seq_encoding)
query_value_attention = tf.keras.layers.GlobalAveragePooling1D()(
query_value_attention_seq)
# Concatenate query and document encodings to produce a DNN input layer.
input_layer = tf.keras.layers.Concatenate()(
[query_encoding, query_value_attention])
# Add DNN layers, and create Model.
# ...
TensorFlow 1 version
View source on GitHub