TensorFlow 1 version
|
View source on GitHub
|
Global max pooling operation for 1D temporal data.
tf.keras.layers.GlobalMaxPool1D(
data_format='channels_last', **kwargs
)
Downsamples the input representation by taking the maximum value over the time dimension.
For example:
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])x = tf.reshape(x, [3, 3, 1])x<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=array([[[1.], [2.], [3.]],[[4.], [5.], [6.]],[[7.], [8.], [9.]]], dtype=float32)>max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()max_pool_1d(x)<tf.Tensor: shape=(3, 1), dtype=float32, numpy=array([[3.],[6.],[9.], dtype=float32)>
Arguments | |
|---|---|
data_format
|
A string,
one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps).
|
Input shape:
- If
data_format='channels_last': 3D tensor with shape:(batch_size, steps, features) - If
data_format='channels_first': 3D tensor with shape:(batch_size, features, steps)
Output shape:
2D tensor with shape (batch_size, features).
TensorFlow 1 version
View source on GitHub