tf.keras.layers.GlobalMaxPool1D
Stay organized with collections
Save and categorize content based on your preferences.
Global max pooling operation for 1D temporal data.
Inherits From: Layer
, Module
tf.keras.layers.GlobalMaxPool1D(
data_format='channels_last', **kwargs
)
Downsamples the input representation by taking the maximum value over
the time dimension.
For example:
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
x = tf.reshape(x, [3, 3, 1])
x
<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=
array([[[1.], [2.], [3.]],
[[4.], [5.], [6.]],
[[7.], [8.], [9.]]], dtype=float32)>
max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()
max_pool_1d(x)
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[3.],
[6.],
[9.], dtype=float32)>
Arguments |
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
- If
data_format='channels_last'
:
3D tensor with shape:
(batch_size, steps, features)
- If
data_format='channels_first'
:
3D tensor with shape:
(batch_size, features, steps)
Output shape:
2D tensor with shape (batch_size, features)
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[],null,["# tf.keras.layers.GlobalMaxPool1D\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/layers/GlobalMaxPool1D) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/layers/pooling.py#L809-L854) |\n\nGlobal max pooling operation for 1D temporal data.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.GlobalMaxPooling1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool1D)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.GlobalMaxPool1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool1D), [`tf.compat.v1.keras.layers.GlobalMaxPooling1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool1D)\n\n\u003cbr /\u003e\n\n tf.keras.layers.GlobalMaxPool1D(\n data_format='channels_last', **kwargs\n )\n\nDownsamples the input representation by taking the maximum value over\nthe time dimension.\n\n#### For example:\n\n x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])\n x = tf.reshape(x, [3, 3, 1])\n x\n \u003ctf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=\n array([[[1.], [2.], [3.]],\n [[4.], [5.], [6.]],\n [[7.], [8.], [9.]]], dtype=float32)\u003e\n max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()\n max_pool_1d(x)\n \u003ctf.Tensor: shape=(3, 1), dtype=float32, numpy=\n array([[3.],\n [6.],\n [9.], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. |\n\n\u003cbr /\u003e\n\n#### Input shape:\n\n- If `data_format='channels_last'`: 3D tensor with shape: `(batch_size, steps, features)`\n- If `data_format='channels_first'`: 3D tensor with shape: `(batch_size, features, steps)`\n\n#### Output shape:\n\n2D tensor with shape `(batch_size, features)`."]]