View source on GitHub |
Crop the central portion of the images to target height and width.
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.experimental.preprocessing.CenterCrop(
height, width, name=None, **kwargs
)
Input shape:
4D tensor with shape:
(samples, height, width, channels)
, data_format='channels_last'.
Output shape:
4D tensor with shape:
(samples, target_height, target_width, channels)
.
If the input height/width is even and the target height/width is odd (or inversely), the input image is left-padded by 1 pixel.
Arguments | |
---|---|
height
|
Integer, the height of the output shape. |
width
|
Integer, the width of the output shape. |
name
|
A string, the name of the layer. |
Methods
adapt
adapt(
data, reset_state=True
)
Fits the state of the preprocessing layer to the data being passed.
Arguments | |
---|---|
data
|
The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state
|
Optional argument specifying whether to clear the state of
the layer at the start of the call to adapt , or whether to start
from the existing state. This argument may not be relevant to all
preprocessing layers: a subclass of PreprocessingLayer may choose to
throw if 'reset_state' is set to False.
|