View source on GitHub |
Buckets data into discrete ranges.
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.experimental.preprocessing.Discretization(
bins, **kwargs
)
This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.
Input shape:
Any tf.Tensor
or tf.RaggedTensor
of dimension 2 or higher.
Output shape:
Same as input shape.
Examples:
Bucketize float values based on provided buckets.
>>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]])
>>> layer = tf.keras.layers.experimental.preprocessing.Discretization(
... bins=[0., 1., 2.])
>>> layer(input)
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[0, 1, 3, 1],
[0, 3, 2, 0]], dtype=int32)>
Attributes | |
---|---|
bins
|
Optional boundary specification. Bins exclude the left boundary and
include the right boundary, so bins=[0., 1., 2.] generates bins
(-inf, 0.) , [0., 1.) , [1., 2.) , and [2., +inf) .
|
Methods
adapt
adapt(
data, reset_state=True
)
Fits the state of the preprocessing layer to the data being passed.
Arguments | |
---|---|
data
|
The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state
|
Optional argument specifying whether to clear the state of
the layer at the start of the call to adapt , or whether to start
from the existing state. This argument may not be relevant to all
preprocessing layers: a subclass of PreprocessingLayer may choose to
throw if 'reset_state' is set to False.
|