View source on GitHub |
Implements categorical feature hashing, also known as "hashing trick".
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.experimental.preprocessing.Hashing(
num_bins, salt=None, name=None, **kwargs
)
This layer transforms single or multiple categorical inputs to hashed output. It converts a sequence of int or string to a sequence of int. The stable hash function uses tensorflow::ops::Fingerprint to produce universal output that is consistent across platforms.
This layer uses FarmHash64 by default, which provides a consistent hashed output across different platforms and is stable across invocations, regardless of device and context, by mixing the input bits thoroughly.
If you want to obfuscate the hashed output, you can also pass a random salt
argument in the constructor. In that case, the layer will use the
SipHash64 hash function, with
the salt
value serving as additional input to the hash function.
Example (FarmHash64):
layer = tf.keras.layers.experimental.preprocessing.Hashing(num_bins=3)
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[0],
[1],
[1],
[2]])>
Example (FarmHash64) with list of inputs:
>>> layer = tf.keras.layers.experimental.preprocessing.Hashing(num_bins=3)
>>> inp_1 = [['A'], ['B'], ['C'], ['D'], ['E']]
>>> inp_2 = np.asarray([[5], [4], [3], [2], [1]])
>>> layer([inp_1, inp_2])
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[1],
[0],
[2],
[0]])>
Example (SipHash64):
layer = tf.keras.layers.experimental.preprocessing.Hashing(num_bins=3,
salt=[133, 137])
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[2],
[1],
[0],
[2]])>
Example (Siphash64 with a single integer, same as salt=[133, 133]
layer = tf.keras.layers.experimental.preprocessing.Hashing(num_bins=3,
salt=133)
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[0],
[0],
[2],
[1],
[0]])>
Reference: SipHash with salt
Arguments | |
---|---|
num_bins
|
Number of hash bins. |
salt
|
A single unsigned integer or None.
If passed, the hash function used will be SipHash64, with these values
used as an additional input (known as a "salt" in cryptography).
These should be non-zero. Defaults to None (in that
case, the FarmHash64 hash function is used). It also supports
tuple/list of 2 unsigned integer numbers, see reference paper for details.
|
name
|
Name to give to the layer. |
**kwargs
|
Keyword arguments to construct a layer. |
Input shape: A single or list of string, int32 or int64 Tensor
,
SparseTensor
or RaggedTensor
of shape [batch_size, ...,]
Output shape: An int64 Tensor
, SparseTensor
or RaggedTensor
of shape
[batch_size, ...]
. If any input is RaggedTensor
then output is
RaggedTensor
, otherwise if any input is SparseTensor
then output is
SparseTensor
, otherwise the output is Tensor
.
Methods
adapt
adapt(
data, reset_state=True
)
Fits the state of the preprocessing layer to the data being passed.
Arguments | |
---|---|
data
|
The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state
|
Optional argument specifying whether to clear the state of
the layer at the start of the call to adapt , or whether to start
from the existing state. This argument may not be relevant to all
preprocessing layers: a subclass of PreprocessingLayer may choose to
throw if 'reset_state' is set to False.
|