View source on GitHub |
Image resizing layer.
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.experimental.preprocessing.Resizing(
height, width, interpolation='bilinear', name=None, **kwargs
)
Resize the batched image input to target height and width. The input should be a 4-D tensor in the format of NHWC.
Arguments | |
---|---|
height
|
Integer, the height of the output shape. |
width
|
Integer, the width of the output shape. |
interpolation
|
String, the interpolation method. Defaults to bilinear .
Supports bilinear , nearest , bicubic , area , lanczos3 , lanczos5 ,
gaussian , mitchellcubic
|
name
|
A string, the name of the layer. |
Methods
adapt
adapt(
data, reset_state=True
)
Fits the state of the preprocessing layer to the data being passed.
Arguments | |
---|---|
data
|
The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state
|
Optional argument specifying whether to clear the state of
the layer at the start of the call to adapt , or whether to start
from the existing state. This argument may not be relevant to all
preprocessing layers: a subclass of PreprocessingLayer may choose to
throw if 'reset_state' is set to False.
|