tf.keras.losses.MAPE
Stay organized with collections
Save and categorize content based on your preferences.
Computes the mean absolute percentage error between y_true
and y_pred
.
View aliases
Main aliases
tf.keras.losses.mape
, tf.keras.losses.mean_absolute_percentage_error
, tf.keras.metrics.MAPE
, tf.keras.metrics.mape
, tf.keras.metrics.mean_absolute_percentage_error
, tf.losses.MAPE
, tf.losses.mape
, tf.losses.mean_absolute_percentage_error
, tf.metrics.MAPE
, tf.metrics.mape
, tf.metrics.mean_absolute_percentage_error
Compat aliases for migration
See
Migration guide for
more details.
tf.compat.v1.keras.losses.MAPE
, tf.compat.v1.keras.losses.mape
, tf.compat.v1.keras.losses.mean_absolute_percentage_error
, tf.compat.v1.keras.metrics.MAPE
, tf.compat.v1.keras.metrics.mape
, tf.compat.v1.keras.metrics.mean_absolute_percentage_error
tf.keras.losses.MAPE(
y_true, y_pred
)
loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)
Standalone usage:
y_true = np.random.random(size=(2, 3))
y_true = np.maximum(y_true, 1e-7) # Prevent division by zero
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
loss.numpy(),
100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1))
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Mean absolute percentage error values. shape = [batch_size, d0, .. dN-1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[],null,["# tf.keras.losses.MAPE\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/losses/MAPE) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/losses.py#L1234-L1268) |\n\nComputes the mean absolute percentage error between `y_true` and `y_pred`.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.losses.mape`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.keras.losses.mean_absolute_percentage_error`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.keras.metrics.MAPE`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.keras.metrics.mape`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.keras.metrics.mean_absolute_percentage_error`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.losses.MAPE`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.losses.mape`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.losses.mean_absolute_percentage_error`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.metrics.MAPE`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.metrics.mape`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.metrics.mean_absolute_percentage_error`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.losses.MAPE`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.compat.v1.keras.losses.mape`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.compat.v1.keras.losses.mean_absolute_percentage_error`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.compat.v1.keras.metrics.MAPE`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.compat.v1.keras.metrics.mape`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE), [`tf.compat.v1.keras.metrics.mean_absolute_percentage_error`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAPE)\n\n\u003cbr /\u003e\n\n tf.keras.losses.MAPE(\n y_true, y_pred\n )\n\n`loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)`\n\n#### Standalone usage:\n\n y_true = np.random.random(size=(2, 3))\n y_true = np.maximum(y_true, 1e-7) # Prevent division by zero\n y_pred = np.random.random(size=(2, 3))\n loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred)\n assert loss.shape == (2,)\n assert np.array_equal(\n loss.numpy(),\n 100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1))\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|----------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]`. |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Mean absolute percentage error values. shape = `[batch_size, d0, .. dN-1]`. ||\n\n\u003cbr /\u003e"]]