tf.keras.optimizers.Adagrad
Stay organized with collections
Save and categorize content based on your preferences.
Optimizer that implements the Adagrad algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Adagrad(
learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,
name='Adagrad', **kwargs
)
Adagrad is an optimizer with parameter-specific learning rates,
which are adapted relative to how frequently a parameter gets
updated during training. The more updates a parameter receives,
the smaller the updates.
Args |
learning_rate
|
A Tensor , floating point value, or a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule . The learning rate.
|
initial_accumulator_value
|
A floating point value.
Starting value for the accumulators, must be non-negative.
|
epsilon
|
A small floating point value to avoid zero denominator.
|
name
|
Optional name prefix for the operations created when applying
gradients. Defaults to "Adagrad" .
|
**kwargs
|
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue" .
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
|
Reference:
Raises |
ValueError
|
in case of any invalid argument.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[],null,["# tf.keras.optimizers.Adagrad\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/optimizers/Adagrad) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/optimizer_v2/adagrad.py#L34-L164) |\n\nOptimizer that implements the Adagrad algorithm.\n\nInherits From: [`Optimizer`](../../../tf/keras/optimizers/Optimizer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.optimizers.Adagrad`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adagrad)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.optimizers.Adagrad`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adagrad)\n\n\u003cbr /\u003e\n\n tf.keras.optimizers.Adagrad(\n learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,\n name='Adagrad', **kwargs\n )\n\nAdagrad is an optimizer with parameter-specific learning rates,\nwhich are adapted relative to how frequently a parameter gets\nupdated during training. The more updates a parameter receives,\nthe smaller the updates.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `learning_rate` | A `Tensor`, floating point value, or a schedule that is a [`tf.keras.optimizers.schedules.LearningRateSchedule`](../../../tf/keras/optimizers/schedules/LearningRateSchedule). The learning rate. |\n| `initial_accumulator_value` | A floating point value. Starting value for the accumulators, must be non-negative. |\n| `epsilon` | A small floating point value to avoid zero denominator. |\n| `name` | Optional name prefix for the operations created when applying gradients. Defaults to `\"Adagrad\"`. |\n| `**kwargs` | Keyword arguments. Allowed to be one of `\"clipnorm\"` or `\"clipvalue\"`. `\"clipnorm\"` (float) clips gradients by norm; `\"clipvalue\"` (float) clips gradients by value. |\n\n\u003cbr /\u003e\n\n#### Reference:\n\n- [Duchi et al., 2011](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------|\n| `ValueError` | in case of any invalid argument. |\n\n\u003cbr /\u003e"]]