tf.math.in_top_k
Stay organized with collections
Save and categorize content based on your preferences.
Says whether the targets are in the top K
predictions.
tf.math.in_top_k(
targets, predictions, k, name=None
)
This outputs a batch_size
bool array, an entry out[i]
is true
if the
prediction for the target class is finite (not inf, -inf, or nan) and among
the top k
predictions among all predictions for example i
. Note that the
behavior of InTopK
differs from the TopK
op in its handling of ties; if
multiple classes have the same prediction value and straddle the top-k
boundary, all of those classes are considered to be in the top k
.
More formally, let
\(predictions_i\) be the predictions for all classes for example i
,
\(targets_i\) be the target class for example i
,
\(out_i\) be the output for example i
,
$$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$
Args |
predictions
|
A Tensor of type float32 .
A batch_size x classes tensor.
|
targets
|
A Tensor . Must be one of the following types: int32 , int64 .
A batch_size vector of class ids.
|
k
|
An int . Number of top elements to look at for computing precision.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type bool . Computed Precision at k as a bool Tensor .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[null,null,["Last updated 2021-02-18 UTC."],[],[],null,["# tf.math.in_top_k\n\n|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/math/in_top_k) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/ops/nn_ops.py#L5740-L5743) |\n\nSays whether the targets are in the top `K` predictions.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.nn.in_top_k`](https://www.tensorflow.org/api_docs/python/tf/math/in_top_k)\n\n\u003cbr /\u003e\n\n tf.math.in_top_k(\n targets, predictions, k, name=None\n )\n\nThis outputs a `batch_size` bool array, an entry `out[i]` is `true` if the\nprediction for the target class is finite (not inf, -inf, or nan) and among\nthe top `k` predictions among all predictions for example `i`. Note that the\nbehavior of `InTopK` differs from the `TopK` op in its handling of ties; if\nmultiple classes have the same prediction value and straddle the top-`k`\nboundary, all of those classes are considered to be in the top `k`.\n\nMore formally, let\n\n\\\\(predictions_i\\\\) be the predictions for all classes for example `i`,\n\\\\(targets_i\\\\) be the target class for example `i`,\n\\\\(out_i\\\\) be the output for example `i`, \n$$out_i = predictions_{i, targets_i} \\\\in TopKIncludingTies(predictions_i)$$\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-------------------------------------------------------------------------------------------------------|\n| `predictions` | A `Tensor` of type `float32`. A `batch_size` x `classes` tensor. |\n| `targets` | A `Tensor`. Must be one of the following types: `int32`, `int64`. A `batch_size` vector of class ids. |\n| `k` | An `int`. Number of top elements to look at for computing precision. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `bool`. Computed Precision at `k` as a `bool Tensor`. ||\n\n\u003cbr /\u003e"]]