TensorFlow 1 version
|
Returns the min of x and y (i.e. x < y ? x : y) element-wise.
tf.math.minimum(
x, y, name=None
)
Both inputs are number-type tensors (except complex). minimum expects that
both tensors have the same dtype.
Examples:
x = tf.constant([0., 0., 0., 0.])y = tf.constant([-5., -2., 0., 3.])tf.math.minimum(x, y)<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>
Note that minimum supports broadcast semantics.
x = tf.constant([-5., 0., 0., 0.])y = tf.constant([-3.])tf.math.minimum(x, y)<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)>
If inputs are not tensors, they will be converted to tensors. See
tf.convert_to_tensor.
x = tf.constant([-3.], dtype=tf.float32)tf.math.minimum([-5], x)<tf.Tensor: shape=(1,), dtype=float32, numpy=array([-5.], dtype=float32)>
Args | |
|---|---|
x
|
A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int16, int32, int64.
|
y
|
A Tensor. Must have the same type as x.
|
name
|
A name for the operation (optional). |
Returns | |
|---|---|
A Tensor. Has the same type as x.
|
TensorFlow 1 version