View source on GitHub |
A preprocessing layer which encodes integer features.
tf.keras.layers.CategoryEncoding(
num_tokens=None, output_mode='multi_hot', sparse=False, **kwargs
)
This layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known, use
tf.keras.layers.IntegerLookup
instead.
For an overview and full list of preprocessing layers, see the preprocessing guide.
Examples:
One-hot encoding data
layer = tf.keras.layers.CategoryEncoding(
num_tokens=4, output_mode="one_hot")
layer([3, 2, 0, 1])
<tf.Tensor: shape=(4, 4), dtype=float32, numpy=
array([[0., 0., 0., 1.],
[0., 0., 1., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.]], dtype=float32)>
Multi-hot encoding data
layer = tf.keras.layers.CategoryEncoding(
num_tokens=4, output_mode="multi_hot")
layer([[0, 1], [0, 0], [1, 2], [3, 1]])
<tf.Tensor: shape=(4, 4), dtype=float32, numpy=
array([[1., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 1., 1., 0.],
[0., 1., 0., 1.]], dtype=float32)>
Using weighted inputs in "count"
mode
layer = tf.keras.layers.CategoryEncoding(
num_tokens=4, output_mode="count")
count_weights = np.array([[.1, .2], [.1, .1], [.2, .3], [.4, .2]])
layer([[0, 1], [0, 0], [1, 2], [3, 1]], count_weights=count_weights)
<tf.Tensor: shape=(4, 4), dtype=float64, numpy=
array([[0.1, 0.2, 0. , 0. ],
[0.2, 0. , 0. , 0. ],
[0. , 0.2, 0.3, 0. ],
[0. , 0.2, 0. , 0.4]], dtype=float32)>