Attend the Women in ML Symposium on December 7 Register now

tfp.bijectors.CholeskyOuterProduct

Compute g(X) = X @ X.T; X is lower-triangular, positive-diagonal matrix.

Inherits From: AutoCompositeTensorBijector, Bijector, AutoCompositeTensor

The surjectivity of g as a map from the set of n x n positive-diagonal lower-triangular matrices to the set of SPD matrices follows immediately from executing the Cholesky factorization algorithm on an SPD matrix A to produce a positive-diagonal lower-triangular matrix L such that A = L @ L.T.

To prove the injectivity of g, suppose that L_1 and L_2 are lower-triangular with positive diagonals and satisfy A = L_1 @ L_1.T = L_2 @ L_2.T. Then inv(L_1) @ A @ inv(L_1).T = [inv(L_1) @ L_2] @ [inv(L_1) @ L_2].T = I. Setting L_3 := inv(L_1) @ L_2, that L_3 is a positive-diagonal lower-triangular matrix follows from inv(L_1) being positive-diagonal lower-triangular (which follows from the diagonal of a triangular matrix being its spectrum), and that the product of two positive-diagonal lower-triangular matrices is another positive-diagonal lower-triangular matrix.

A simple inductive argument (proceeding one column of L_3 at a time) shows that, if I = L_3 @ L_3.T, with L_3 being lower-triangular with positive- diagonal, then L_3 = I. Thus, L_1 = L_2, proving injectivity of g.

Examples

bijector.CholeskyOuterProduct().forward(x=[[1., 0], [2, 1]])
# Result: [[1., 2], [2, 5]], i.e., x @ x.T

bijector.CholeskyOuterProduct().inverse(y=[[1., 2], [2, 5]])
# Result: [[1., 0], [2, 1]], i.e., cholesky(y).

cholesky_fn Callable which takes a single (batch) matrix argument and returns a Cholesky-like lower triangular factor. Default value: tf.linalg.cholesky,
validate_args Python bool indicating whether arguments should be checked for correctness.
name Python str name given to ops managed by this object.

cholesky_fn

dtype

forward_min_event_ndims Returns the minimal number of dimensions bijector.forward operates on.

Multipart bijectors return structured ndims, which indicates the expected structure of their inputs. Some multipart bijectors, notably Composites, may return structures of None.

graph_parents Returns this Bijector's graph_parents as a Python list.
has_static_min_event_ndims Returns True if the bijector has statically-known min_event_ndims. (deprecated)

inverse_min_event_ndims Returns the minimal number of dimensions bijector.inverse operates on.

Multipart bijectors return structured event_ndims, which indicates the expected structure of their outputs. Some multipart bijectors, notably Composites, may return structures of None.

is_constant_jacobian Returns true iff the Jacobian matrix is not a function of x.

name Returns the string name of this Bijector.
name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables Sequence of non-trainable variables owned by this module and its submodules.
parameters Dictionary of parameters used to instantiate this Bijector.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

validate_args Returns True if Tensor arguments will be validated.
variables Sequence of variables owned by this module and its submodules.

Methods

copy

View source

Creates a copy of the bijector.

Args
**override_parameters_kwargs String/value dictionary of initialization arguments to override with new values.

Returns
bijector A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

experimental_batch_shape

View source

Returns the batch shape of this bijector for inputs of the given rank.

The batch shape of a bijector decribes the set of distinct transformations it represents on events of a given size. For example: the bijector tfb.Scale([1., 2.]) has batch shape [2] for scalar events (event_ndims = 0), because applying it to a scalar event produces two scalar outputs, the result of two different scaling transformations. The same bijector has batch shape [] for vector events, because applying it to a vector produces (via elementwise multiplication) a single vector output.

Bijectors that operate independently on multiple state parts, such as tfb.JointMap, must broadcast to a coherent batch shape. Some events may not be valid: for example, the bijector tfd.JointMap([tfb.Scale([1., 2.]), tfb.Scale([1., 2., 3.])]) does not produce a valid batch shape when event_ndims = [0, 0], since the batch shapes of the two parts are inconsistent. The same bijector does define valid batch shapes of [], [2], and [3] if event_ndims is [1, 1], [0, 1], or [1, 0], respectively.

Since transforming a single event produces a scalar log-det-Jacobian, the batch shape of a bijector with non-constant Jacobian is expected to equal the shape of forward_log_det_jacobian(x, event_ndims=x_event_ndims) or inverse_log_det_jacobian(y, event_ndims=y_event_ndims), for x or y of the specified ndims.

Args
x_event_ndims Optional Python int (structure) number of dimensions in a probabilistic event passed to forward; this must be greater than or equal to self.forward_min_event_ndims. If None, defaults to self.forward_min_event_ndims. Mutually exclusive with y_event_ndims. Default value: None.
y_event_ndims Optional Python int (structure) number of dimensions in a probabilistic event passed to inverse; this must be greater than or equal to self.inverse_min_event_ndims. Mutually exclusive with x_event_ndims. Default value: None.

Returns
batch_shape TensorShape batch shape of this bijector for a value with the given event rank. May be unknown or partially defined.

experimental_batch_shape_tensor

View source

Returns the batch shape of this bijector for inputs of the given rank.

The batch shape of a bijector decribes the set of distinct transformations it represents on events of a given size. For example: the bijector tfb.Scale([1., 2.]) has batch shape [2] for scalar events (event_ndims = 0), because applying it to a scalar event produces two scalar outputs, the result of two different scaling transformations. The same bijector has batch shape [] for vector events, because applying it to a vector produces (via elementwise multiplication) a single vector output.

Bijectors that operate independently on multiple state parts, such as tfb.JointMap, must broadcast to a coherent batch shape. Some events may not be valid: for example, the bijector tfd.JointMap([tfb.Scale([1., 2.]), tfb.Scale([1., 2., 3.])]) does not produce a valid batch shape when event_ndims = [0, 0], since the batch shapes of the two parts are inconsistent. The same bijector does define valid batch shapes of [], [2], and [3] if event_ndims is [1, 1], [0, 1], or [1, 0], respectively.

Since transforming a single event produces a scalar log-det-Jacobian, the batch shape of a bijector with non-constant Jacobian is expected to equal the shape of forward_log_det_jacobian(x, event_ndims=x_event_ndims) or inverse_log_det_jacobian(y, event_ndims=y_event_ndims), for x or y of the specified ndims.

Args
x_event_ndims Optional Python int (structure) number of dimensions in a probabilistic event passed to forward; this must be greater than or equal to self.forward_min_event_ndims. If None, defaults to self.forward_min_event_ndims. Mutually exclusive with y_event_ndims. Default value: None.
y_event_ndims Optional Python int (structure) number of dimensions in a probabilistic event passed to inverse; this must be greater than or equal to self.inverse_min_event_ndims. Mutually exclusive with x_event_ndims. Default value: None.

Returns
batch_shape_tensor integer Tensor batch shape of this bijector for a value with the given event rank.

experimental_compute_density_correction

View source

Density correction for this transformation wrt the tangent space, at x.

Subclasses of Bijector may call the most specific applicable method of TangentSpace, based on whether the transformation is dimension-preserving, coordinate-wise, a projection, or something more general. The backward-compatible assumption is that the transformation is dimension-preserving (goes from R^n to R^n).

Args
x Tensor (structure). The point at which to calculate the density.
tangent_space TangentSpace or one of its subclasses. The tangent to the support man