![]() |
RelaxedBernoulli distribution with temperature and logits parameters.
Inherits From: Distribution
tfp.substrates.numpy.distributions.RelaxedBernoulli(
temperature, logits=None, probs=None, validate_args=False, allow_nan_stats=True,
name='RelaxedBernoulli'
)
The RelaxedBernoulli is a distribution over the unit interval (0,1), which
continuously approximates a Bernoulli. The degree of approximation is
controlled by a temperature: as the temperature goes to 0 the
RelaxedBernoulli becomes discrete with a distribution described by the
logits
or probs
parameters, as the temperature goes to infinity the
RelaxedBernoulli becomes the constant distribution that is identically 0.5.
The RelaxedBernoulli distribution is a reparameterized continuous distribution that is the binary special case of the RelaxedOneHotCategorical distribution (Maddison et al., 2016; Jang et al., 2016). For details on the binary special case see the appendix of Maddison et al. (2016) where it is referred to as BinConcrete. If you use this distribution, please cite both papers.
Some care needs to be taken for loss functions that depend on the
log-probability of RelaxedBernoullis, because computing log-probabilities of
the RelaxedBernoulli can suffer from underflow issues. In many case loss
functions such as these are invariant under invertible transformations of
the random variables. The KL divergence, found in the variational autoencoder
loss, is an example. Because RelaxedBernoullis are sampled by a Logistic
random variable followed by a tf.sigmoid
op, one solution is to treat
the Logistic as the random variable and tf.sigmoid
as downstream. The
KL divergences of two Logistics, which are always followed by a tf.sigmoid
op, is equivalent to evaluating KL divergences of RelaxedBernoulli samples.
See Maddison et al., 2016 for more details where this distribution is called
the BinConcrete.
An alternative approach is to evaluate Bernoulli log probability or KL directly on relaxed samples, as done in Jang et al., 2016. In this case, guarantees on the loss are usually violated. For instance, using a Bernoulli KL in a relaxed ELBO is no longer a lower bound on the log marginal probability of the observation. Thus care and early stopping are important.
Examples
Creates three continuous distributions, which approximate 3 Bernoullis with probabilities (0.1, 0.5, 0.4). Samples from these distributions will be in the unit interval (0,1).
temperature = 0.5
p = [0.1, 0.5, 0.4]
dist = RelaxedBernoulli(temperature, probs=p)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1).
temperature = 0.5
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, whose sigmoid approximate 3 Bernoullis with logits (-2, 2, 0).
temperature = 0.5
logits = [-2, 2, 0]
dist = Logistic(logits/temperature, 1./temperature)
samples = dist.sample()
sigmoid_samples = tf.sigmoid(samples)
# sigmoid_samples has the same distribution as samples from
# RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very low, samples from these distributions are almost discrete, usually taking values very close to 0 or 1.
temperature = 1e-5
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very high, samples from these distributions are usually close to the (0.5, 0.5, 0.5) vector.
temperature = 100
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016.
Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2016.
Args | |
---|---|
temperature
|
A Tensor , representing the temperature of a set of
RelaxedBernoulli distributions. The temperature values should be
positive.
|
logits
|
An N-D Tensor representing the log-odds
of a positive event. Each entry in the Tensor parameterizes
an independent RelaxedBernoulli distribution where the probability of an
event is sigmoid(logits). Only one of logits or probs should be
passed in.
|
probs
|
An N-D Tensor representing the probability of a positive event.
Each entry in the Tensor parameterizes an independent Bernoulli
distribution. Only one of logits or probs should be passed in.
|
validate_args
|
Python bool , default False . When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
|
allow_nan_stats
|
Python bool , default True . When True , statistics
(e.g., mean, mode, variance) use the value "NaN " to indicate the
result is undefined. When False , an exception is raised if one or
more of the statistic's batch members are undefined.
|
name
|
Python str name prefixed to Ops created by this class.
|
Raises | |
---|---|
ValueError
|
If both probs and logits are passed, or if neither.
|
Attributes | |
---|---|
allow_nan_stats
|
Python bool describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape
|
Shape of a single sample from a single event index as a TensorShape .
May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
dtype
|
The DType of Tensor s handled by this Distribution .
|
event_shape
|
Shape of a single sample from a single batch as a TensorShape .
May be partially defined or unknown. |
logits
|
Input argument logits .
|
name
|
Name prepended to all ops created by this Distribution .
|
parameters
|
Dictionary of parameters used to instantiate this Distribution .
|
probs
|
Input argument probs .
|
reparameterization_type
|
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
|
temperature
|
Distribution parameter for the location. |
trainable_variables
|
|
validate_args
|
Python bool indicating possibly expensive checks are enabled.
|
variables
|
Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
batch_shape
|
Tensor .
|
cdf
cdf(
value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
cdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution
|
A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs) .
|
covariance
covariance(
name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
length-k'
vector.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
covariance
|
Floating-point Tensor with shape [B1, ..., Bn, k', k']
where the first n dimensions are batch coordinates and
k' = reduce_prod(self.event_shape) .
|
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shannon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cross_entropy
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of (Shannon) cross entropy.
|
entropy
entropy(
name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
event_shape
|
Tensor .
|
experimental_default_event_space_bijector
experimental_default_event_space_bijector(
*args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement
_default_event_space_bijector
which returns a subclass of
tfp.bijectors.Bijector
that maps R**n to the distribution's event space.
For example, the default bijector for the Beta
distribution
is tfp.bijectors.Sigmoid()
, which maps the real line to [0, 1]
, the
support of the Beta
distribution. The default bijector for the
CholeskyLKJ
distribution is tfp.bijectors.CorrelationCholesky
, which
maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular
matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector
is
to enable gradient descent in an unconstrained space for Variational
Inference and Hamiltonian Monte Carlo methods. Some effort has been made to
choose bijectors such that the tails of the distribution in the
unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently
lacks a suitable bijector, this function returns None
.
Args | |
---|---|
*args
|
Passed to implementation _default_event_space_bijector .
|
**kwargs
|
Passed to implementation _default_event_space_bijector .
|
Returns | |
---|---|
event_space_bijector
|
Bijector instance or None .
|
is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_batch
|
bool scalar Tensor .
|
is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_event
|
bool scalar Tensor .
|
kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by
q
. Assuming p, q
are absolutely continuous with respect to reference
measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shannon) cross entropy, and H[.]
denotes (Shannon) entropy.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
kl_divergence
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of the Kullback-Leibler
divergence.
|
log_cdf
log_cdf(
value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields
a more accurate answer than simply taking the logarithm of the cdf
when
x << -1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
logcdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_prob
log_prob(
value, name='log_prob', **kwargs
)
Log probability density/mass function.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_survival_function
log_survival_function(
value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
logits_parameter
logits_parameter(
name=None
)
Logits computed from non-None
input arg (probs
or logits
).
mean
mean(
name='mean', **kwargs
)
Mean.
mode
mode(
name='mode', **kwargs
)
Mode.
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape
|
Tensor or python list/tuple. Desired shape of a call to
sample() .
|
name
|
name to prepend ops with. |
Returns | |
---|---|
dict of parameter name to Tensor shapes.
|
param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
. Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes
to return
constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape
|
TensorShape or python list/tuple. Desired shape of a call
to sample() .
|
Returns | |
---|---|
dict of parameter name to TensorShape .
|
Raises | |
---|---|
ValueError
|
if sample_shape is a TensorShape and is not fully defined.
|
parameter_properties
@classmethod
parameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution's
Tensor
-valued constructor arguments.
Args | |
---|---|
dtype
|
Optional float dtype to assume for continuous-valued parameters.
Some constraining bijectors require advance knowledge of the dtype
because certain constants (e.g., tfb.Softplus.low ) must be
instantiated with the same dtype as the values to be transformed.
|
num_classes
|
Optional int Tensor number of classes to assume when
inferring the shape of parameters for categorical-like distributions.
Otherwise ignored.
|
Returns | |
---|---|
parameter_properties
|
A
str -> tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names to ParameterProperties`
instances.
|
prob
prob(
value, name='prob', **kwargs
)
Probability density/mass function.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
probs_parameter
probs_parameter(
name=None
)
Probs computed from non-None
input arg (probs
or logits
).
quantile
quantile(
value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
quantile
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
sample
sample(
sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single
sample.
Args | |
---|---|
sample_shape
|
0D or 1D int32 Tensor . Shape of the generated samples.
|
seed
|
Python integer or tfp.util.SeedStream instance, for seeding PRNG.
|
name
|
name to give to the op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples
|
a Tensor with prepended dimensions sample_shape .
|
stddev
stddev(
name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
stddev
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
survival_function
survival_function(
value, name='survival_function', **kwargs
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
variance
variance(
name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
variance
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
__getitem__
__getitem__(
slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape # => [3, 1, 5, 2, 4]
x = tf.random.stateless_normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.stateless_normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape # => [4, 5, 3]
mvn.event_shape # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape # => [4, 2, 3, 1]
mvn2.event_shape # => [2]
Args | |
---|---|
slices
|
slices from the [] operator |
Returns | |
---|---|
dist
|
A new tfd.Distribution instance with sliced parameters.
|
__iter__
__iter__()