![]() |
Reshapes the event_shape
of a Tensor
.
Inherits From: Bijector
tfp.substrates.numpy.bijectors.Reshape(
event_shape_out, event_shape_in=(-1,), validate_args=False, name=None
)
The semantics generally follow that of tf.reshape()
, with
a few differences:
- The user must provide both the input and output shape, so that the transformation can be inverted. If an input shape is not specified, the default assumes a vector-shaped input, i.e., event_shape_in = (-1,).
- The
Reshape
bijector automatically broadcasts over the leftmost dimensions of its input (sample_shape
andbatch_shape
); only the rightmostevent_ndims_in
dimensions are reshaped. The number of dimensions to reshape is inferred from the providedevent_shape_in
(event_ndims_in = len(event_shape_in)
).
Example usage:
r = tfp.bijectors.Reshape(event_shape_out=[1, -1])
r.forward([3., 4.]) # shape [2]
# ==> [[3., 4.]] # shape [1, 2]
r.forward([[1., 2.], [3., 4.]]) # shape [2, 2]
# ==> [[[1., 2.]],
# [[3., 4.]]] # shape [2, 1, 2]
r.inverse([[3., 4.]]) # shape [1,2]
# ==> [3., 4.] # shape [2]
r.forward_log_det_jacobian(any_value)
# ==> 0.
r.inverse_log_det_jacobian(any_value)
# ==> 0.
[1] The case in question is exemplified in the following snippet:
bijector = tfp.bijectors.Reshape(
event_shape_out=tf.placeholder(dtype=tf.int32, shape=[1]),
event_shape_in= tf.placeholder(dtype=tf.int32, shape=[3]),
validate_args=True)
bijector.forward_event_shape(tf.TensorShape([5, 2, 3, 7]))
# Chosen policy ==> (5, None)
# Alternate policy ==> (5, 42)
In the chosen policy, since we don't know what event_shape_in/out
are at the
time of the call to forward_event_shape
, we simply fill in everything we
do know, which is that the last three dims will be replaced with
"something".
In the alternate policy, we would assume that the intention must be to reshape
[5, 2, 3, 7]
such that the last three dims collapse to one, which is only
possible if the resulting shape is [5, 42]
.
Note that the above is the only case in which we could do such inference; if the output shape has more than 1 dim, we can't infer anything. E.g., we would have
bijector = tfp.bijectors.Reshape(
event_shape_out=tf.placeholder(dtype=tf.int32, shape=[2]),
event_shape_in= tf.placeholder(dtype=tf.int32, shape=[3]),
validate_args=True)
bijector.forward_event_shape(tf.TensorShape([5, 2, 3, 7]))
# Either policy ==> (5, None, None)
Args | |
---|---|
event_shape_out
|
An int -like vector-shaped Tensor
representing the event shape of the transformed output.
|
event_shape_in
|
An optional int -like vector-shape Tensor
representing the event shape of the input. This is required in
order to define inverse operations; the default of (-1,)
assumes a vector-shaped input.
|
validate_args
|
Python bool indicating whether arguments should
be checked for correctness.
|
name
|
Python str , name given to ops managed by this object.
|
Raises | |
---|---|
TypeError
|
if either event_shape_in or event_shape_out has
non-integer dtype .
|
ValueError
|
if either of event_shape_in or event_shape_out
has non-vector shape (rank > 1 ), or if their sizes do not
match.
|
Attributes | |
---|---|
dtype
|
|
forward_min_event_ndims
|
Returns the minimal number of dimensions bijector.forward operates on.
Multipart bijectors return structured |
graph_parents
|
Returns this Bijector 's graph_parents as a Python list.
|
has_static_min_event_ndims
|
Returns True if the bijector has statically-known min_event_ndims .
|
inverse_min_event_ndims
|
Returns the minimal number of dimensions bijector.inverse operates on.
Multipart bijectors return structured |
is_constant_jacobian
|
Returns true iff the Jacobian matrix is not a function of x. |
name
|
Returns the string name of this Bijector .
|
parameters
|
Dictionary of parameters used to instantiate this Bijector .
|
trainable_variables
|
|
validate_args
|
Returns True if Tensor arguments will be validated. |
variables
|
Methods
forward
forward(
x, name='forward', **kwargs
)
Returns the forward Bijector
evaluation, i.e., X = g(Y).
Args | |
---|---|
x
|
Tensor (structure). The input to the 'forward' evaluation.
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor (structure).
|
Raises | |
---|---|
TypeError
|
if self.dtype is specified and x.dtype is not
self.dtype .
|
NotImplementedError
|
if _forward is not implemented.
|
forward_dtype
forward_dtype(
dtype=UNSPECIFIED, name='forward_dtype', **kwargs
)
Returns the dtype returned by forward
for the provided input.
forward_event_ndims
forward_event_ndims(
event_ndims, **kwargs
)
Returns the number of event dimensions produced by forward
.
forward_event_shape
forward_event_shape(
input_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
Args | |
---|---|
input_shape
|
TensorShape (structure) indicating event-portion shape
passed into forward function.
|
Returns | |
---|---|
forward_event_shape_tensor
|
TensorShape (structure) indicating
event-portion shape after applying forward . Possibly unknown.
|
forward_event_shape_tensor
forward_event_shape_tensor(
input_shape, name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args | |
---|---|
input_shape
|
Tensor , int32 vector (structure) indicating event-portion
shape passed into forward function.
|
name
|
name to give to the op |
Returns | |
---|---|
forward_event_shape_tensor
|
Tensor , int32 vector (structure)
indicating event-portion shape after applying forward .
|
forward_log_det_jacobian
forward_log_det_jacobian(
x, event_ndims, name='forward_log_det_jacobian', **kwargs
)
Returns both the forward_log_det_jacobian.
Args | |
---|---|
x
|
Tensor (structure). The input to the 'forward' Jacobian determinant
evaluation.
|
event_ndims
|
Number of dimensions in the probabilistic events being
transformed. Must be greater than or equal to
self.forward_min_event_ndims . The result is summed over the final
dimensions to produce a scalar Jacobian determinant for each event, i.e.
it has shape rank(x) - event_ndims dimensions.
Multipart bijectors require structured event_ndims, such that
rank(y[i]) - rank(event_ndims[i]) is the same for all elements i of
the structured input. Furthermore, the first event_ndims[i] of each
x[i].shape must be the same for all i (broadcasting is not allowed).
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor (structure), if this bijector is injective.
If not injective this is not implemented.
|
Raises | |
---|---|
TypeError
|
if y 's dtype is incompatible with the expected output dtype.
|
NotImplementedError
|
if neither _forward_log_det_jacobian
nor {_inverse , _inverse_log_det_jacobian } are implemented, or
this is a non-injective bijector.
|
inverse
inverse(
y, name='inverse', **kwargs
)
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
Args | |
---|---|
y
|
Tensor (structure). The input to the 'inverse' evaluation.
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor (structure), if this bijector is injective.
If not injective, returns the k-tuple containing the unique
k points (x1, ..., xk) such that g(xi) = y .
|
Raises | |
---|---|
TypeError
|
if y 's structured dtype is incompatible with the expected
output dtype.
|
NotImplementedError
|
if _inverse is not implemented.
|
inverse_dtype
inverse_dtype(
dtype=UNSPECIFIED, name='inverse_dtype', **kwargs
)
Returns the dtype returned by inverse
for the provided input.
inverse_event_ndims
inverse_event_ndims(
event_ndims, **kwargs
)
Returns the number of event dimensions produced by inverse
.
inverse_event_shape
inverse_event_shape(
output_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
Args | |
---|---|
output_shape
|
TensorShape (structure) indicating event-portion shape
passed into inverse function.
|
Returns | |
---|---|
inverse_event_shape_tensor
|
TensorShape (structure) indicating
event-portion shape after applying inverse . Possibly unknown.
|
inverse_event_shape_tensor
inverse_event_shape_tensor(
output_shape, name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args | |
---|---|
output_shape
|
Tensor , int32 vector (structure) indicating
event-portion shape passed into inverse function.
|
name
|
name to give to the op |
Returns | |
---|---|
inverse_event_shape_tensor
|
Tensor , int32 vector (structure)
indicating event-portion shape after applying inverse .
|
inverse_log_det_jacobian
inverse_log_det_jacobian(
y, event_ndims, name='inverse_log_det_jacobian', **kwargs
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function,
evaluated at g^{-1}(y)
.
Args | |
---|---|
y
|
Tensor (structure). The input to the 'inverse' Jacobian determinant
evaluation.
|
event_ndims
|
Number of dimensions in the probabilistic events being
transformed. Must be greater than or equal to
self.inverse_min_event_ndims . The result is summed over the final
dimensions to produce a scalar Jacobian determinant for each event, i.e.
it has shape rank(y) - event_ndims dimensions.
Multipart bijectors require structured event_ndims, such that
rank(y[i]) - rank(event_ndims[i]) is the same for all elements i of
the structured input. Furthermore, the first event_ndims[i] of each
x[i].shape must be the same for all i (broadcasting is not allowed).
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
ildj
|
Tensor , if this bijector is injective.
If not injective, returns the tuple of local log det
Jacobians, log(det(Dg_i^{-1}(y))) , where g_i is the restriction
of g to the ith partition Di .
|
Raises | |
---|---|
TypeError
|
if x 's dtype is incompatible with the expected inverse-dtype.
|
NotImplementedError
|
if _inverse_log_det_jacobian is not implemented.
|
__call__
__call__(
value, name=None, **kwargs
)
Applies or composes the Bijector
, depending on input type.
This is a convenience function which applies the Bijector
instance in
three different ways, depending on the input:
- If the input is a
tfd.Distribution
instance, returntfd.TransformedDistribution(distribution=input, bijector=self)
. - If the input is a
tfb.Bijector
instance, returntfb.Chain([self, input])
. - Otherwise, return
self.forward(input)
Args | |
---|---|
value
|
A tfd.Distribution , tfb.Bijector , or a (structure of) Tensor .
|
name
|
Python str name given to ops created by this function.
|
**kwargs
|
Additional keyword arguments passed into the created
tfd.TransformedDistribution , tfb.Bijector , or self.forward .
|
Returns | |
---|---|
composition
|
A tfd.TransformedDistribution if the input was a
tfd.Distribution , a tfb.Chain if the input was a tfb.Bijector , or
a (structure of) Tensor computed by self.forward .
|
Examples
sigmoid = tfb.Reciprocal()(
tfb.Shift(shift=1.)(
tfb.Exp()(
tfb.Scale(scale=-1.))))
# ==> `tfb.Chain([
# tfb.Reciprocal(),
# tfb.Shift(shift=1.),
# tfb.Exp(),
# tfb.Scale(scale=-1.),
# ])` # ie, `tfb.Sigmoid()`
log_normal = tfb.Exp()(tfd.Normal(0, 1))
# ==> `tfd.TransformedDistribution(tfd.Normal(0, 1), tfb.Exp())`
tfb.Exp()([-1., 0., 1.])
# ==> tf.exp([-1., 0., 1.])
__eq__
__eq__(
other
)
Return self==value.