![]() |
Base class for Composition bijectors (Chain, JointMap).
Inherits From: Bijector
tfp.substrates.numpy.bijectors.Composition(
bijectors, forward_min_event_ndims, inverse_min_event_ndims, name, parameters,
validate_event_size=False, **kwargs
)
A Composition represents a partially ordered set of invertible
transformations. These transformations may happen in series (Chain), in
parallel (JointMap), or they could be an arbitrary DAG. Composition handles
the common machinery of such transformations, delegating graph-traversal to
_walk_forward
and _walk_inverse
(which must be overridden by subclasses).
The _walk_{direction}
methods take a step_fn
, a single (structured)
argument
(representing zipped *args
), and arbitrary **kwargs
. They are
responsible for invoking step_fn(bij, bij_inputs, **bij_kwds)
for each nested bijector. See Chain
and JointMap
for examples.
These methods are typically invoked using _call_walk_{direction}
, which
wraps step_fn
and converts structured *args
into a single structure of
tuples, allowing users to provide a step_fn
with multiple positional
arguments (e.g., foward_log_det_jacobian
).
In practice, Bijector methods are defined in the base-class, and users
should not need to invoke walk
methods directly.
Args | |
---|---|
bijectors
|
A nest-compatible structure of bijector instances. |
forward_min_event_ndims
|
A (structure of) integer describing both the
multi-part structure of inputs to forward and the aligned mininimum
valid event-ndims. Compositions that allow different relative ranks
should pass structures of None .
|
inverse_min_event_ndims
|
A (structure of) integer describing both the
multi-part structure of inputs to inverse and the aligned mininimum
valid event-ndims. Compositions that allow different relative ranks
should pass structures of None .
|
name
|
Name of this bijector. |
parameters
|
Dictionary of parameters used to initialize this bijector.
These must be the exact values passed to __init__ .
|
validate_event_size
|
Checks that bijectors are not applied to inputs with
incomplete support. For example, the following LDJ would be incorrect:
Chain([Scale(), SoftmaxCentered()]).forward_log_det_jacobian([1], [1])
The jacobian contribution from Scale applies to a 2-dimensional input,
but the output from SoftMaxCentered is a 1-dimensional input embedded
in a 2-dimensional space. Setting validate_event_size=True (default)
prints warnings in these cases. When validate_args is also True , the
warning is promoted to an exception.
|
**kwargs
|
Additional parameters forwarded to the bijector base-class. |
Attributes | |
---|---|
bijectors
|
|
dtype
|
|
forward_min_event_ndims
|
Returns the minimal number of dimensions bijector.forward operates on.
Multipart bijectors return structured |
graph_parents
|
Returns this Bijector 's graph_parents as a Python list.
|
has_static_min_event_ndims
|
Returns True if the bijector has statically-known min_event_ndims .
|
inverse_min_event_ndims
|
Returns the minimal number of dimensions bijector.inverse operates on.
Multipart bijectors return structured |
is_constant_jacobian
|
Returns true iff the Jacobian matrix is not a function of x. |
name
|
Returns the string name of this Bijector .
|
parameters
|
Dictionary of parameters used to instantiate this Bijector .
|
trainable_variables
|
|
validate_args
|
Returns True if Tensor arguments will be validated. |
validate_event_size
|
|
variables
|
Methods
forward
forward(
x, name='forward', **kwargs
)
Returns the forward Bijector
evaluation, i.e., X = g(Y).
Args | |
---|---|
x
|
Tensor (structure). The input to the 'forward' evaluation.
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor (structure).
|
Raises | |
---|---|
TypeError
|
if self.dtype is specified and x.dtype is not
self.dtype .
|
NotImplementedError
|
if _forward is not implemented.
|
forward_dtype
forward_dtype(
dtype=UNSPECIFIED, name='forward_dtype', **kwargs
)
Returns the dtype returned by forward
for the provided input.
forward_event_ndims
forward_event_ndims(
event_ndims, **kwargs
)
Returns the number of event dimensions produced by forward
.
forward_event_shape
forward_event_shape(
input_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
Args | |
---|---|
input_shape
|
TensorShape (structure) indicating event-portion shape
passed into forward function.
|
Returns | |
---|---|
forward_event_shape_tensor
|
TensorShape (structure) indicating
event-portion shape after applying forward . Possibly unknown.
|
forward_event_shape_tensor
forward_event_shape_tensor(
input_shape, name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args | |
---|---|
input_shape
|
Tensor , int32 vector (structure) indicating event-portion
shape passed into forward function.
|
name
|
name to give to the op |
Returns | |
---|---|
forward_event_shape_tensor
|
Tensor , int32 vector (structure)
indicating event-portion shape after applying forward .
|
forward_log_det_jacobian
forward_log_det_jacobian(
x, event_ndims, name='forward_log_det_jacobian', **kwargs
)
Returns both the forward_log_det_jacobian.
Args | |
---|---|
x
|
Tensor (structure). The input to the 'forward' Jacobian determinant
evaluation.
|
event_ndims
|
Number of dimensions in the probabilistic events being
transformed. Must be greater than or equal to
self.forward_min_event_ndims . The result is summed over the final
dimensions to produce a scalar Jacobian determinant for each event, i.e.
it has shape rank(x) - event_ndims dimensions.
Multipart bijectors require structured event_ndims, such that
rank(y[i]) - rank(event_ndims[i]) is the same for all elements i of
the structured input. Furthermore, the first event_ndims[i] of each
x[i].shape must be the same for all i (broadcasting is not allowed).
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor (structure), if this bijector is injective.
If not injective this is not implemented.
|
Raises | |
---|---|
TypeError
|
if y 's dtype is incompatible with the expected output dtype.
|
NotImplementedError
|
if neither _forward_log_det_jacobian
nor {_inverse , _inverse_log_det_jacobian } are implemented, or
this is a non-injective bijector.
|
inverse
inverse(
y, name='inverse', **kwargs
)
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
Args | |
---|---|
y
|
Tensor (structure). The input to the 'inverse' evaluation.
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor (structure), if this bijector is injective.
If not injective, returns the k-tuple containing the unique
k points (x1, ..., xk) such that g(xi) = y .
|
Raises | |
---|---|
TypeError
|
if y 's structured dtype is incompatible with the expected
output dtype.
|
NotImplementedError
|
if _inverse is not implemented.
|
inverse_dtype
inverse_dtype(
dtype=UNSPECIFIED, name='inverse_dtype', **kwargs
)
Returns the dtype returned by inverse
for the provided input.
inverse_event_ndims
inverse_event_ndims(
event_ndims, **kwargs
)
Returns the number of event dimensions produced by inverse
.
inverse_event_shape
inverse_event_shape(
output_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
Args | |
---|---|
output_shape
|
TensorShape (structure) indicating event-portion shape
passed into inverse function.
|
Returns | |
---|---|
inverse_event_shape_tensor
|
TensorShape (structure) indicating
event-portion shape after applying inverse . Possibly unknown.
|
inverse_event_shape_tensor
inverse_event_shape_tensor(
output_shape, name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args | |
---|---|
output_shape
|
Tensor , int32 vector (structure) indicating
event-portion shape passed into inverse function.
|
name
|
name to give to the op |
Returns | |
---|---|
inverse_event_shape_tensor
|
Tensor , int32 vector (structure)
indicating event-portion shape after applying inverse .
|
inverse_log_det_jacobian
inverse_log_det_jacobian(
y, event_ndims, name='inverse_log_det_jacobian', **kwargs
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function,
evaluated at g^{-1}(y)
.
Args | |
---|---|
y
|
Tensor (structure). The input to the 'inverse' Jacobian determinant
evaluation.
|
event_ndims
|
Number of dimensions in the probabilistic events being
transformed. Must be greater than or equal to
self.inverse_min_event_ndims . The result is summed over the final
dimensions to produce a scalar Jacobian determinant for each event, i.e.
it has shape rank(y) - event_ndims dimensions.
Multipart bijectors require structured event_ndims, such that
rank(y[i]) - rank(event_ndims[i]) is the same for all elements i of
the structured input. Furthermore, the first event_ndims[i] of each
x[i].shape must be the same for all i (broadcasting is not allowed).
|
name
|
The name to give this op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
ildj
|
Tensor , if this bijector is injective.
If not injective, returns the tuple of local log det
Jacobians, log(det(Dg_i^{-1}(y))) , where g_i is the restriction
of g to the ith partition Di .
|
Raises | |
---|---|
TypeError
|
if x 's dtype is incompatible with the expected inverse-dtype.
|
NotImplementedError
|
if _inverse_log_det_jacobian is not implemented.
|
__call__
__call__(
value, name=None, **kwargs
)
Applies or composes the Bijector
, depending on input type.
This is a convenience function which applies the Bijector
instance in
three different ways, depending on the input:
- If the input is a
tfd.Distribution
instance, returntfd.TransformedDistribution(distribution=input, bijector=self)
. - If the input is a
tfb.Bijector
instance, returntfb.Chain([self, input])
. - Otherwise, return
self.forward(input)
Args | |
---|---|
value
|
A tfd.Distribution , tfb.Bijector , or a (structure of) Tensor .
|
name
|
Python str name given to ops created by this function.
|
**kwargs
|
Additional keyword arguments passed into the created
tfd.TransformedDistribution , tfb.Bijector , or self.forward .
|
Returns | |
---|---|
composition
|
A tfd.TransformedDistribution if the input was a
tfd.Distribution , a tfb.Chain if the input was a tfb.Bijector , or
a (structure of) Tensor computed by self.forward .
|
Examples
sigmoid = tfb.Reciprocal()(
tfb.Shift(shift=1.)(
tfb.Exp()(
tfb.Scale(scale=-1.))))
# ==> `tfb.Chain([
# tfb.Reciprocal(),
# tfb.Shift(shift=1.),
# tfb.Exp(),
# tfb.Scale(scale=-1.),
# ])` # ie, `tfb.Sigmoid()`
log_normal = tfb.Exp()(tfd.Normal(0, 1))
# ==> `tfd.TransformedDistribution(tfd.Normal(0, 1), tfb.Exp())`
tfb.Exp()([-1., 0., 1.])
# ==> tf.exp([-1., 0., 1.])
__eq__
__eq__(
other
)
Return self==value.