Sorts a tensor.
tfp.experimental.distributions.marginal_fns.ps.sort(
    values, axis=-1, direction='ASCENDING', name=None
)
Usage:
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
tf.sort(a).numpy()
array([  1.  ,   2.8 ,  10.  ,  26.9 ,  62.3 , 166.32], dtype=float32)
tf.sort(a, direction='DESCENDING').numpy()
array([166.32,  62.3 ,  26.9 ,  10.  ,   2.8 ,   1.  ], dtype=float32)
For multidimensional inputs you can control which axis the sort is applied
along. The default axis=-1 sorts the innermost axis.
mat = [[3,2,1],
       [2,1,3],
       [1,3,2]]
tf.sort(mat, axis=-1).numpy()
array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]], dtype=int32)
tf.sort(mat, axis=0).numpy()
array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]], dtype=int32)
See also | 
tf.argsort: Like sort, but it returns the sort indices. 
tf.math.top_k: A partial sort that returns a fixed number of top values
and corresponding indices.
  | 
Args | 
values
 | 
1-D or higher numeric Tensor.
 | 
axis
 | 
The axis along which to sort. The default is -1, which sorts the last
axis.
 | 
direction
 | 
The direction in which to sort the values ('ASCENDING' or
'DESCENDING').
 | 
name
 | 
Optional name for the operation.
 | 
Returns | 
A Tensor with the same dtype and shape as values, with the elements
sorted along the given axis.
 | 
Raises | 
tf.errors.InvalidArgumentError
 | 
If the values.dtype is not a float or
int type.
 | 
ValueError
 | 
If axis is not a constant scalar, or the direction is invalid.
 |