View source on GitHub |
Bijective transformations.
Classes
class AbsoluteValue
: Computes Y = g(X) = Abs(X)
, element-wise.
class Ascending
: Maps unconstrained R^n to R^n in ascending order.
class AutoCompositeTensorBijector
: Base for CompositeTensor
bijectors with auto-generated TypeSpec
s.
class AutoregressiveNetwork
: Masked Autoencoder for Distribution Estimation [Germain et al. (2015)][1].
class BatchNormalization
: Compute Y = g(X) s.t. X = g^-1(Y) = (Y - mean(Y)) / std(Y)
.
class Bijector
: Interface for transformations of a Distribution
sample.
class Blockwise
: Bijector which applies a list of bijectors to blocks of a Tensor
.
class Chain
: Bijector which applies a composition of bijectors.
class CholeskyOuterProduct
: Compute g(X) = X @ X.T
; X is lower-triangular, positive-diagonal matrix.
class CholeskyToInvCholesky
: Maps the Cholesky factor of M
to the Cholesky factor of M^{-1}
.
class Composition
: Base class for Composition bijectors (Chain, JointMap).
class CorrelationCholesky
: Maps unconstrained reals to Cholesky-space correlation matrices.
class Cumsum
: Computes the cumulative sum of a tensor along a specified axis.
class DiscreteCosineTransform
: Compute Y = g(X) = DCT(X)
, where DCT type is indicated by the type
arg.
class Exp
: Compute Y = g(X) = exp(X)
.
class Expm1
: Compute Y = g(X) = exp(X) - 1
.
class FFJORD
: Implements a continuous normalizing flow X->Y defined via an ODE.
class FillScaleTriL
: Transforms unconstrained vectors to TriL matrices with positive diagonal.
class FillTriangular
: Transforms vectors to triangular.
class FrechetCDF
: The Frechet cumulative density function.
class GeneralizedExtremeValueCDF
: Compute the GeneralizedExtremeValue CDF.
class GeneralizedPareto
: Bijector mapping R**n to non-negative reals.
class Glow
: Implements the Glow Bijector from Kingma & Dhariwal (2018)[1].
class GlowDefaultExitNetwork
: Default network for the glow exit bijector.
class GlowDefaultNetwork
: Default network for the glow bijector.
class GompertzCDF
: Compute Y = g(X) = 1 - exp(-c * (exp(rate * X) - 1)
, the Gompertz CDF.
class GumbelCDF
: Compute Y = g(X) = exp(-exp(-(X - loc) / scale))
, the Gumbel CDF.
class Householder
: Compute the reflection of a vector across a hyperplane.
class Identity
: Compute Y = g(X) = X.
class Inline
: Bijector constructed from custom callables.
class Invert
: Bijector which inverts another Bijector.
class IteratedSigmoidCentered
: Bijector which applies a Stick Breaking procedure.
class JointMap
: Bijector which applies a structure of bijectors in parallel.
class KumaraswamyCDF
: Compute Y = g(X) = (1 - X**a)**b, X in [0, 1]
.
class LambertWTail
: LambertWTail transformation for heavy-tail Lambert W x F random variables.
class Log
: Compute Y = log(X)
. This is Invert(Exp())
.
class Log1p
: Compute Y = log1p(X)
. This is Invert(Expm1())
.
class MaskedAutoregressiveFlow
: Affine MaskedAutoregressiveFlow bijector.
class MatrixInverseTriL
: Computes g(L) = inv(L)
, where L
is a lower-triangular matrix.
class MatvecLU
: Matrix-vector multiply using LU decomposition.
class MoyalCDF
: Compute Y = g(X) = erfc(exp(- 1/2 * (X - loc) / scale) / sqrt(2))
.
class NormalCDF
: Compute Y = g(X) = NormalCDF(x)
.
class Pad
: Pads a value to the event_shape
of a Tensor
.
class Permute
: Permutes the rightmost dimension of a Tensor
.
class Power
: Compute g(X) = X ** power
; where X is a non-negative real number.
class PowerTransform
: Compute Y = g(X) = (1 + X * c)**(1 / c), X >= -1 / c
.
class RationalQuadraticSpline
: A piecewise rational quadratic spline, as developed in [1].
class RayleighCDF
: Compute Y = g(X) = 1 - exp( -(X/scale)**2 / 2 ), X >= 0
.
class RealNVP
: RealNVP 'affine coupling layer' for vector-valued events.
class Reciprocal
: A Bijector
that computes the reciprocal b(x) = 1. / x
entrywise.
class Reshape
: Reshapes the event_shape
of a Tensor
.
class Restructure
: Converts between nested structures of Tensors.
class Scale
: Compute Y = g(X; scale) = scale * X
.
class ScaleMatvecDiag
: Compute Y = g(X; scale) = scale @ X
.
class ScaleMatvecLU
: Matrix-vector multiply using LU decomposition.
class ScaleMatvecLinearOperator
: Compute Y = g(X; scale) = scale @ X
.
class ScaleMatvecLinearOperatorBlock
: Compute Y = g(X; scale) = scale @ X
for blockwise X
and scale
.
class ScaleMatvecTriL
: Compute Y = g(X; scale) = scale @ X
.
class Shift
: Compute Y = g(X; shift) = X + shift
.
class ShiftedGompertzCDF
: Compute Y = g(X) = (1 - exp(-rate * X)) * exp(-c * exp(-rate * X))
.
class Sigmoid
: Bijector that computes the logistic sigmoid function.
class Sinh
: Bijector that computes Y = sinh(X)
.
class SinhArcsinh
: Y = g(X) = Sinh( (Arcsinh(X) + skewness) * tailweight ) * multiplier
.
class SoftClip
: Bijector that approximates clipping as a continuous, differentiable map.
class Softfloor
: Compute a differentiable approximation to tf.math.floor
.
class SoftmaxCentered
: Bijector which computes Y = g(X) = exp([X 0]) / sum(exp([X 0]))
.
class Softplus
: Bijector which computes Y = g(X) = Log[1 + exp(X)]
.
class Softsign
: Bijector which computes Y = g(X) = X / (1 + |X|)
.
class Split
: Split a Tensor
event along an axis into a list of Tensor
s.
class Square
: Compute g(X) = X^2
; X is a positive real number.
class Tanh
: Bijector that computes Y = tanh(X)
, therefore Y in (-1, 1)
.
class TransformDiagonal
: Applies a Bijector to the diagonal of a matrix.
class Transpose
: Compute Y = g(X) = transpose_rightmost_dims(X, rightmost_perm)
.
class UnitVector
: Bijector mapping vectors onto the unit sphere.
class WeibullCDF
: Compute Y = g(X) = 1 - exp( -( X / scale) ** concentration), X >= 0
.
Functions
masked_autoregressive_default_template(...)
: Build the Masked Autoregressive Density Estimator (Germain et al., 2015). (deprecated)
masked_dense(...)
: A autoregressively masked dense layer. Analogous to tf.layers.dense
.
pack_sequence_as(...)
: Returns a Bijector variant of tf.nest.pack_sequence_as.
real_nvp_default_template(...)
: Build a scale-and-shift function using a multi-layer neural network.
tree_flatten(...)
: Returns a Bijector variant of tf.nest.flatten.