View source on GitHub |
Dirichlet-Multinomial compound distribution.
Inherits From: AutoCompositeTensorDistribution
, Distribution
, AutoCompositeTensor
tfp.distributions.DirichletMultinomial(
total_count,
concentration,
validate_args=False,
allow_nan_stats=True,
name='DirichletMultinomial'
)
The Dirichlet-Multinomial distribution is parameterized by a (batch of)
length-K
concentration
vectors (K > 1
) and a total_count
number of
trials, i.e., the number of trials per draw from the DirichletMultinomial. It
is defined over a (batch of) length-K
vector counts
such that
tf.reduce_sum(counts, -1) = total_count
. The Dirichlet-Multinomial is
identically the Beta-Binomial distribution when K = 2
.
Mathematical Details
The Dirichlet-Multinomial is a distribution over K
-class counts, i.e., a
length-K
vector of non-negative integer counts = n = [n_0, ..., n_{K-1}]
.
The probability mass function (pmf) is,
pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z
Z = Beta(alpha) / N!
where:
concentration = alpha = [alpha_0, ..., alpha_{K-1}]
,alpha_j > 0
,total_count = N
,N
a positive integer,N!
isN
factorial, and,Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j)
is the multivariate beta function, and,Gamma
is the gamma function.
Dirichlet-Multinomial is a compound distribution, i.e., its samples are generated as follows.
- Choose class probabilities:
probs = [p_0,...,p_{K-1}] ~ Dir(concentration)
- Draw integers:
counts = [n_0,...,n_{K-1}] ~ Multinomial(total_count, probs)
The last concentration
dimension parameterizes a single
Dirichlet-Multinomial distribution. When calling distribution functions
(e.g., dist.prob(counts)
), concentration
, total_count
and counts
are
broadcast to the same shape. The last dimension of counts
corresponds to
single Dirichlet-Multinomial distributions.
Distribution parameters are automatically broadcast in all functions; see examples for details.
Pitfalls
The number of classes, K
, must not exceed:
- the largest integer representable by
self.dtype
, i.e.,2**(mantissa_bits+1)
(IEE754), - the maximum
Tensor
index, i.e.,2**31-1
.
In other words,
K <= min(2**31-1, {
tf.float16: 2**11,
tf.float32: 2**24,
tf.float64: 2**53 }[param.dtype])
Examples
alpha = [1., 2., 3.]
n = 2.
dist = DirichletMultinomial(n, alpha)
Creates a 3-class distribution, with the 3rd class is most likely to be drawn. The distribution functions can be evaluated on counts.
# counts same shape as alpha.
counts = [0., 0., 2.]
dist.prob(counts) # Shape []
# alpha will be broadcast to [[1., 2., 3.], [1., 2., 3.]] to match counts.
counts = [[1., 1., 0.], [1., 0., 1.]]
dist.prob(counts) # Shape [2]
# alpha will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7]
Creates a 2-batch of 3-class distributions.
alpha = [[1., 2., 3.], [4., 5., 6.]] # Shape [2, 3]
n = [3., 3.]
dist = DirichletMultinomial(n, alpha)
# counts will be broadcast to [[2., 1., 0.], [2., 1., 0.]] to match alpha.
counts = [2., 1., 0.]
dist.prob(counts) # Shape [2]
Attributes | |
---|---|
allow_nan_stats
|
Python bool describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape
|
Shape of a single sample from a single event index as a TensorShape .
May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
concentration
|
Concentration parameter; expected prior counts for that coordinate. |
dtype
|
The DType of Tensor s handled by this Distribution .
|
event_shape
|
Shape of a single sample from a single batch as a TensorShape .
May be partially defined or unknown. |
experimental_shard_axis_names
|
The list or structure of lists of active shard axis names. |
name
|
Name prepended to all ops created by this Distribution .
|
name_scope
|
Returns a tf.name_scope instance for this class.
|
non_trainable_variables
|
Sequence of non-trainable variables owned by this module and its submodules. |
parameters
|
Dictionary of parameters used to instantiate this Distribution .
|
reparameterization_type
|
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
|
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
total_count
|
Number of trials used to construct a sample. |
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
validate_args
|
Python bool indicating possibly expensive checks are enabled.
|
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
batch_shape
|
Tensor .
|
cdf
cdf(
value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
cdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
compute_total_concentration
compute_total_concentration()
Compute and return the sum of last dim of concentration parameter.
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution
|
A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs) .
|
covariance
covariance(
name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
length-k'
vector.
Additional documentation from DirichletMultinomial
:
The covariance for each batch member is defined as the following:
Var(X_j) = n * alpha_j / alpha_0 * (1 - alpha_j / alpha_0) *
(n + alpha_0) / (1 + alpha_0)
where concentration = alpha
and
total_concentration = alpha_0 = sum_j alpha_j
.
The covariance between elements in a batch is defined as:
Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 *
(n + alpha_0) / (1 + alpha_0)
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
covariance
|
Floating-point Tensor with shape [B1, ..., Bn, k', k']
where the first n dimensions are batch coordinates and
k' = reduce_prod(self.event_shape) .
|
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shannon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cross_entropy
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of (Shannon) cross entropy.
|
entropy
entropy(
name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
event_shape
|
Tensor .
|
experimental_default_event_space_bijector
experimental_default_event_space_bijector(
*args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement
_default_event_space_bijector
which returns a subclass of
tfp.bijectors.Bijector
that maps R**n to the distribution's event space.
For example, the default bijector for the Beta
distribution
is tfp.bijectors.Sigmoid()
, which maps the real line to [0, 1]
, the
support of the Beta
distribution. The default bijector for the
CholeskyLKJ
distribution is tfp.bijectors.CorrelationCholesky
, which
maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular
matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector
is
to enable gradient descent in an unconstrained space for Variational
Inference and Hamiltonian Monte Carlo methods. Some effort has been made to
choose bijectors such that the tails of the distribution in the
unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently
lacks a suitable bijector, this function returns None
.
Args | |
---|---|
*args
|
Passed to implementation _default_event_space_bijector .
|
**kwargs
|
Passed to implementation _default_event_space_bijector .
|
Returns | |
---|---|
event_space_bijector
|
Bijector instance or None .
|
experimental_fit
@classmethod
experimental_fit( value, sample_ndims=1, validate_args=False, **init_kwargs )
Instantiates a distribution that maximizes the likelihood of x
.
Args | |
---|---|
value
|
a Tensor valid sample from this distribution family.
|
sample_ndims
|
Positive int Tensor number of leftmost dimensions of
value that index i.i.d. samples.
Default value: 1 .
|
validate_args
|
Python bool , default False . When True , distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False , invalid inputs may silently render incorrect
outputs.
Default value: False .
|
**init_kwargs
|
Additional keyword arguments passed through to
cls.__init__ . These take precedence in case of collision with the
fitted parameters; for example,
tfd.Normal.experimental_fit([1., 1.], scale=20.) returns a Normal
distribution with scale=20. rather than the maximum likelihood
parameter scale=0. .
|
Returns | |
---|---|
maximum_likelihood_instance
|
instance of cls with parameters that
maximize the likelihood of value .
|
experimental_local_measure
experimental_local_measure(
value, backward_compat=False, **kwargs
)
Returns a log probability density together with a TangentSpace
.
A TangentSpace
allows us to calculate the correct push-forward
density when we apply a transformation to a Distribution
on
a strict submanifold of R^n (typically via a Bijector
in the
TransformedDistribution
subclass). The density correction uses
the basis of the tangent space.
Args | |
---|---|
value
|
float or double Tensor .
|
backward_compat
|
bool specifying whether to fall back to returning
FullSpace as the tangent space, and representing R^n with the standard
basis.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob
|
a Tensor representing the log probability density, of shape
sample_shape(x) + self.batch_shape with values of type self.dtype .
|
tangent_space
|
a TangentSpace object (by default FullSpace )
representing the tangent space to the manifold at value .
|
Raises | |
---|---|
UnspecifiedTangentSpaceError if backward_compat is False and
the _experimental_tangent_space attribute has not been defined.
|
experimental_sample_and_log_prob
experimental_sample_and_log_prob(
sample_shape=(), seed=None, name='sample_and_log_prob', **kwargs
)
Samples from this distribution and returns the log density of the sample.
The default implementation simply calls sample
and log_prob
:
def _sample_and_log_prob(self, sample_shape, seed, **kwargs):
x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs)
return x, self.log_prob(x, **kwargs)
However, some subclasses may provide more efficient and/or numerically stable implementations.
Args | |
---|---|
sample_shape
|
integer Tensor desired shape of samples to draw.
Default value: () .
|
seed
|
PRNG seed; see tfp.random.sanitize_seed for details.
Default value: None .
|
name
|
name to give to the op.
Default value: 'sample_and_log_prob' .
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples
|
a Tensor , or structure of Tensor s, with prepended dimensions
sample_shape .
|
log_prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_batch
|
bool scalar Tensor .
|
is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_event
|
bool scalar Tensor .
|
kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by
q
. Assuming p, q
are absolutely continuous with respect to reference
measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shannon) cross entropy, and H[.]
denotes (Shannon) entropy.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
kl_divergence
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of the Kullback-Leibler
divergence.
|
log_cdf
log_cdf(
value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields
a more accurate answer than simply taking the logarithm of the cdf
when
x << -1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
logcdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_prob
log_prob(
value, name='log_prob', **kwargs
)
Log probability density/mass function.
Additional documentation from DirichletMultinomial
:
For each batch of counts,
value = [n_0, ..., n_{K-1}]
, P[value]
is the probability that after
sampling self.total_count
draws from this Dirichlet-Multinomial distribution,
the number of draws falling in class j
is n_j
. Since this definition is
exchangeable;
different sequences have the same counts so the probability includes a
combinatorial coefficient.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_survival_function
log_survival_function(
value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
mean
mean(
name='mean', **kwargs
)
Mean.
mode
mode(
name='mode', **kwargs
)
Mode.
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
. (deprecated)
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape
|
Tensor or python list/tuple. Desired shape of a call to
sample() .
|
name
|
name to prepend ops with. |
Returns | |
---|---|
dict of parameter name to Tensor shapes.
|
param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes. (deprecated)
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
. Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes
to return
constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape
|
TensorShape or python list/tuple. Desired shape of a call
to sample() .
|
Returns | |
---|---|
dict of parameter name to TensorShape .
|
Raises | |
---|---|
ValueError
|
if sample_shape is a TensorShape and is not fully defined.
|
parameter_properties
@classmethod
parameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution's
Tensor
-valued constructor arguments.
Distribution subclasses are not required to implement
_parameter_properties
, so this method may raise NotImplementedError
.
Providing a _parameter_properties
implementation enables several advanced
features, including:
- Distribution batch slicing (
sliced_distribution = distribution[i:j]
). - Automatic inference of
_batch_shape
and_batch_shape_tensor
, which must otherwise be computed explicitly. - Automatic instantiation of the distribution within TFP's internal property tests.
- Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference.
In the future, parameter property annotations may enable additional
functionality; for example, returning Distribution instances from
tf.vectorized_map
.
Args | |
---|---|
dtype
|
Optional float dtype to assume for continuous-valued parameters.
Some constraining bijectors require advance knowledge of the dtype
because certain constants (e.g., tfb.Softplus.low ) must be
instantiated with the same dtype as the values to be transformed.
|
num_classes
|
Optional int Tensor number of classes to assume when
inferring the shape of parameters for categorical-like distributions.
Otherwise ignored.
|
Returns | |
---|---|
parameter_properties
|
A
str -> tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names to ParameterProperties`
instances.
|
Raises | |
---|---|
NotImplementedError
|
if the distribution class does not implement
_parameter_properties .
|
prob
prob(
value, name='prob', **kwargs
)
Probability density/mass function.
Additional documentation from DirichletMultinomial
:
For each batch of counts,
value = [n_0, ..., n_{K-1}]
, P[value]
is the probability that after
sampling self.total_count
draws from this Dirichlet-Multinomial distribution,
the number of draws falling in class j
is n_j
. Since this definition is
exchangeable;
different sequences have the same counts so the probability includes a
combinatorial coefficient.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
quantile
quantile(
value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
quantile
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
sample
sample(
sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single
sample.
Args | |
---|---|
sample_shape
|
0D or 1D int32 Tensor . Shape of the generated samples.
|
seed
|
PRNG seed; see tfp.random.sanitize_seed for details.
|
name
|
name to give to the op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples
|
a Tensor with prepended dimensions sample_shape .
|
stddev
stddev(
name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
stddev
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
survival_function
survival_function(
value, name='survival_function', **kwargs
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
unnormalized_log_prob
unnormalized_log_prob(
value, name='unnormalized_log_prob', **kwargs
)
Potentially unnormalized log probability density/mass function.
This function is similar to log_prob
, but does not require that the
return value be normalized. (Normalization here refers to the total
integral of probability being one, as it should be by definition for any
probability distribution.) This is useful, for example, for distributions
where the normalization constant is difficult or expensive to compute. By
default, this simply calls log_prob
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
unnormalized_log_prob
|
a Tensor of shape
sample_shape(x) + self.batch_shape with values of type self.dtype .
|
variance
variance(
name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
variance
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose
names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method
|
The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |
__getitem__
__getitem__(
slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape # => [3, 1, 5, 2, 4]
x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape # => [4, 5, 3]
mvn.event_shape # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape # => [4, 2, 3, 1]
mvn2.event_shape # => [2]
Args | |
---|---|
slices
|
slices from the [] operator |
Returns | |
---|---|
dist
|
A new tfd.Distribution instance with sliced parameters.
|
__iter__
__iter__()