float-like (batch of) scalar Tensor; the location parameter of
the LogNormal prior.
scale
float-like (batch of) scalar Tensor; the scale parameter of
the LogNormal prior.
quadrature_size
Python int scalar representing the number of quadrature
points.
validate_args
Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
name
Python str name prefixed to Ops created by this class.
Returns
grid
(Batch of) length-quadrature_size vectors representing the
log_rate parameters of a Poisson.
probs
(Batch of) length-quadrature_size vectors representing the
weight associate with each grid value.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.distributions.quadrature_scheme_lognormal_gauss_hermite\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/distributions/poisson_lognormal.py#L44-L84) |\n\nUse Gauss-Hermite quadrature to form quadrature on positive-reals. \n\n tfp.distributions.quadrature_scheme_lognormal_gauss_hermite(\n loc, scale, quadrature_size, validate_args=False, name=None\n )\n\n| **Note:** for a given `quadrature_size`, this method is generally less accurate than `quadrature_scheme_lognormal_quantiles`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `loc` | `float`-like (batch of) scalar `Tensor`; the location parameter of the LogNormal prior. |\n| `scale` | `float`-like (batch of) scalar `Tensor`; the scale parameter of the LogNormal prior. |\n| `quadrature_size` | Python `int` scalar representing the number of quadrature points. |\n| `validate_args` | Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. |\n| `name` | Python `str` name prefixed to Ops created by this class. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---------|-------------------------------------------------------------------------------------------------------|\n| `grid` | (Batch of) length-`quadrature_size` vectors representing the `log_rate` parameters of a `Poisson`. |\n| `probs` | (Batch of) length-`quadrature_size` vectors representing the weight associate with each `grid` value. |\n\n\u003cbr /\u003e"]]