View source on GitHub |
Experimental functions to use as marginals for GaussianProcess(es).
Modules
mvn_linear_operator
module: Multivariate Normal distribution classes.
ps
module: Operations that use static values when possible.
tfp_custom_gradient
module: TF and JAX compatible custom gradients.
Functions
make_backoff_cholesky(...)
: Make a function that tries Cholesky then the user-specified function.
make_cholesky_like_marginal_fn(...)
: Use a Cholesky-like function for GaussianProcess
marginal_fn
.
make_eigh_marginal_fn(...)
: Make an eigenvalue decomposition-based marginal_fn
.
retrying_cholesky(...)
: Computes a modified Cholesky decomposition for a batch of square matrices.