View source on GitHub |
TensorFlow Probability experimental distributions package.
Modules
marginal_fns
module: Experimental functions to use as marginals for GaussianProcess(es).
Classes
class ImportanceResample
: Models the distribution of finitely many importance-reweighted samples.
class IncrementLogProb
: A distribution representing an unnormalized measure on a singleton set.
class JointDistributionPinned
: A wrapper class for JointDistribution
which pins, e.g., the evidence.
class MultiTaskGaussianProcess
: Marginal distribution of a Multitask GP at finitely many points.
class MultiTaskGaussianProcessRegressionModel
: Posterior predictive in a conjugate Multi-task GP regression model.
class MultivariateNormalPrecisionFactorLinearOperator
: A multivariate normal on R^k
, parametrized by a precision factor.
Functions
inflated_factory(...)
: Create Inflated subclasses for specific distributions and positions.
log_prob_ratio(...)
: Computes p.log_prob(x) - q.log_prob(y)
, numerically stably.