|  View source on GitHub | 
Basic affine layer.
Inherits From: Layer
tfp.experimental.nn.Affine(
    input_size,
    output_size,
    kernel_initializer=None,
    bias_initializer=None,
    make_kernel_bias_fn=tfp.experimental.nn.util.make_kernel_bias,
    dtype=tf.float32,
    batch_shape=(),
    activation_fn=None,
    name=None
)
| Args | |
|---|---|
| input_size | ... | 
| output_size | ... | 
| kernel_initializer | ...
Default value: None(i.e.,tfp.experimental.nn.initializers.glorot_uniform()). | 
| bias_initializer | ...
Default value: None(i.e.,tf.initializers.zeros()). | 
| make_kernel_bias_fn | ...
Default value: tfp.experimental.nn.util.make_kernel_bias. | 
| dtype | ...
Default value: tf.float32. | 
| batch_shape | ...
Default value: (). | 
| activation_fn | ...
Default value: None. | 
| name | ...
Default value: None(i.e.,'Affine'). | 
| Attributes | |
|---|---|
| activation_fn | |
| also_track | |
| bias | |
| dtype | |
| kernel | |
| name | Returns the name of this module as passed or determined in the ctor. | 
| name_scope | Returns a tf.name_scopeinstance for this class. | 
| non_trainable_variables | Sequence of non-trainable variables owned by this module and its submodules. | 
| submodules | Sequence of all sub-modules. Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on). 
 | 
| trainable_variables | Sequence of trainable variables owned by this module and its submodules. | 
| validate_args | Python boolindicating possibly expensive checks are enabled. | 
| variables | Sequence of variables owned by this module and its submodules. | 
Methods
load
load(
    filename
)
save
save(
    filename
)
summary
summary()
with_name_scope
@classmethodwith_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):@tf.Module.with_name_scopedef __call__(self, x):if not hasattr(self, 'w'):self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose
names included the module name:
mod = MyModule()mod(tf.ones([1, 2]))<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>mod.w<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,numpy=..., dtype=float32)>
| Args | |
|---|---|
| method | The method to wrap. | 
| Returns | |
|---|---|
| The original method wrapped such that it enters the module's name scope. | 
__call__
__call__(
    x
)
Call self as a function.