View source on GitHub |
Densely-connected layer class with Flipout estimator.
Inherits From: VariationalLayer
, Layer
tfp.experimental.nn.AffineVariationalFlipout(
input_size,
output_size,
kernel_initializer=None,
bias_initializer=None,
make_posterior_fn=tfp.experimental.nn.util.make_kernel_bias_posterior_mvn_diag
,
make_prior_fn=tfp.experimental.nn.util.make_kernel_bias_prior_spike_and_slab
,
posterior_value_fn=tfp.distributions.Distribution.sample
,
unpack_weights_fn=unpack_kernel_and_bias,
dtype=tf.float32,
activation_fn=None,
seed=None,
validate_args=False,
name=None
)
This layer implements the Bayesian variational inference analogue to
a dense layer by assuming the kernel
and/or the bias
are drawn
from distributions. By default, the layer implements a stochastic
forward pass via sampling from the kernel and bias posteriors,
kernel, bias ~ posterior
outputs = tf.linalg.matmul(inputs, kernel) + bias
It uses the Flipout estimator [(Wen et al., 2018)][1], which performs a Monte
Carlo approximation of the distribution integrating over the kernel
and
bias
. Flipout uses roughly twice as many floating point operations as the
reparameterization estimator but has the advantage of significantly lower
variance.
The arguments permit separate specification of the surrogate posterior
(q(W|x)
), prior (p(W)
), and divergence for both the kernel
and bias
distributions.
Upon being built, this layer adds losses (accessible via the losses
property) representing the divergences of kernel
and/or bias
surrogate
posteriors and their respective priors. When doing minibatch stochastic
optimization, make sure to scale this loss such that it is applied just once
per epoch (e.g. if kl
is the sum of losses
for each element of the batch,
you should pass kl / num_examples_per_epoch
to your optimizer).
Examples
We illustrate a Bayesian neural network with variational inference,
assuming a dataset of images and length-10 one-hot targets
.
# Using the following substitution, see:
tfn = tfp.experimental.nn
help(tfn.AffineVariationalReparameterization)
BayesAffine = tfn.AffineVariationalFlipout
This example uses reparameterization gradients to minimize the Kullback-Leibler divergence up to a constant, also known as the negative Evidence Lower Bound. It consists of the sum of two terms: the expected negative log-likelihood, which we approximate via Monte Carlo; and the KL divergence, which is added via regularizer terms which are arguments to the layer.
References
[1]: Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches. In International Conference on Learning Representations, 2018. https://arxiv.org/abs/1803.04386
Args | |
---|---|
input_size: ...
output_size: ...
kernel_initializer: ...
Default value: None (i.e.,
tfp.experimental.nn.initializers.glorot_uniform() ).
bias_initializer: ...
Default value: None (i.e., tf.initializers.zeros() ).
make_posterior_fn: ...
Default value:
tfp.experimental.nn.util.make_kernel_bias_posterior_mvn_diag .
make_prior_fn: ...
Default value:
tfp.experimental.nn.util.make_kernel_bias_prior_spike_and_slab .
posterior_value_fn: ...
Default valye: tfd.Distribution.sample
unpack_weights_fn:
Default value: unpack_kernel_and_bias
dtype: ...
Default value: tf.float32 .
activation_fn: ...
Default value: None .
|
|
seed
|
...
Default value: None (i.e., no seed).
|
validate_args
|
...
Default value: False .
name: ...
Default value: None (i.e.,
'AffineVariationalFlipout' ).
|
Attributes | |
---|---|
activation_fn
|
|
also_track
|
|
dtype
|
|
name
|
Returns the name of this module as passed or determined in the ctor. |
name_scope
|
Returns a tf.name_scope instance for this class.
|
non_trainable_variables
|
Sequence of non-trainable variables owned by this module and its submodules. |
posterior
|
|
posterior_value
|
|
posterior_value_fn
|
|
prior
|
|
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
unpack_weights_fn
|
|
validate_args
|
Python bool indicating possibly expensive checks are enabled.
|
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
load
load(
filename
)
save
save(
filename
)
summary
summary()
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose
names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method
|
The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |
__call__
__call__(
x, **kwargs
)
Call self as a function.