View source on GitHub |
Densely-connected layer class with local reparameterization estimator.
Inherits From: VariationalLayer
, Layer
tfp.experimental.nn.AffineVariationalReparameterizationLocal(
input_size,
output_size,
kernel_initializer=None,
bias_initializer=None,
make_posterior_fn=tfp.experimental.nn.util.make_kernel_bias_posterior_mvn_diag
,
make_prior_fn=tfp.experimental.nn.util.make_kernel_bias_prior_spike_and_slab
,
posterior_value_fn=tfp.distributions.Distribution.sample
,
unpack_weights_fn=unpack_kernel_and_bias,
dtype=tf.float32,
activation_fn=None,
seed=None,
validate_args=False,
name=None
)
This layer implements the Bayesian variational inference analogue to
a dense layer by assuming the kernel
and/or the bias
are drawn
from distributions. By default, the layer implements a stochastic
forward pass via sampling from the kernel and bias posteriors,
kernel, bias ~ posterior
outputs = matmul(inputs, kernel) + bias
It uses the local reparameterization estimator [(Kingma et al., 2015)][1],
which performs a Monte Carlo approximation of the distribution on the hidden
units induced by the kernel
and bias
. The default kernel_posterior_fn
is a normal distribution which factorizes across all elements of the weight
matrix and bias vector. Unlike [1]'s multiplicative parameterization, this
distribution has trainable location and scale parameters which is known as
an additive noise parameterization [(Molchanov et al., 2017)][2].
The arguments permit separate specification of the surrogate posterior
(q(W|x)
), prior (p(W)
), and divergence for both the kernel
and bias
distributions.
Upon being built, this layer adds losses (accessible via the losses
property) representing the divergences of kernel
and/or bias
surrogate
posteriors and their respective priors. When doing minibatch stochastic
optimization, make sure to scale this loss such that it is applied just once
per epoch (e.g. if kl
is the sum of losses
for each element of the batch,
you should pass kl / num_examples_per_epoch
to your optimizer).
You can access the kernel
and/or bias
posterior and prior distributions
after the layer is built via the kernel_posterior
, kernel_prior
,
bias_posterior
and bias_prior
properties.
Examples
We illustrate a Bayesian neural network with variational inference,
assuming a dataset of images and length-10 one-hot targets
.
# Using the following substitution, see:
tfn = tfp.experimental.nn
help(tfn.AffineVariationalReparameterization)
BayesAffine = tfn.AffineVariationalReparameterizationLocal
This example uses reparameterization gradients to minimize the Kullback-Leibler divergence up to a constant, also known as the negative Evidence Lower Bound. It consists of the sum of two terms: the expected negative log-likelihood, which we approximate via Monte Carlo; and the KL divergence, which is added via regularizer terms which are arguments to the layer.
References
[1]: Diederik Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local Reparameterization Trick. In Neural Information Processing Systems, 2015. https://arxiv.org/abs/1506.02557 [2]: Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov. Variational Dropout Sparsifies Deep Neural Networks. In International Conference on Machine Learning, 2017. https://arxiv.org/abs/1701.05369
Args | |
---|---|
input_size
|
... |
output_size
|
... |
kernel_initializer
|
...
Default value: None (i.e.,
tfp.nn.initializers.glorot_uniform() ).
|
bias_initializer
|
...
Default value: None (i.e., tf.initializers.zeros() ).
|
make_posterior_fn
|
...
Default value:
tfp.experimental.nn.util.make_kernel_bias_posterior_mvn_diag .
|
make_prior_fn
|
...
Default value:
tfp.experimental.nn.util.make_kernel_bias_prior_spike_and_slab .
|
posterior_value_fn
|
...
Default valye: tfd.Distribution.sample
|
unpack_weights_fn
|
Default value: unpack_kernel_and_bias
|
dtype
|
...
Default value: tf.float32 .
|
activation_fn
|
...
Default value: None .
|
seed
|
...
Default value: None (i.e., no seed).
|
validate_args
|
...
Default value: False .
|
name
|
...
Default value: None (i.e.,
'AffineVariationalFlipout' ).
|
Attributes | |
---|---|
activation_fn
|
|
also_track
|
|
dtype
|
|
name
|
Returns the name of this module as passed or determined in the ctor. |
name_scope
|
Returns a tf.name_scope instance for this class.
|
non_trainable_variables
|
Sequence of non-trainable variables owned by this module and its submodules. |
posterior
|
|
posterior_value
|
|
posterior_value_fn
|
|
prior
|
|
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
unpack_weights_fn
|
|
validate_args
|
Python bool indicating possibly expensive checks are enabled.
|
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
load
load(
filename
)
save
save(
filename
)
summary
summary()
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose
names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method
|
The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |
__call__
__call__(
x
)
Call self as a function.