View source on GitHub |
Function object which memoizes the result of create_value_fn()
.
tfp.experimental.nn.util.CallOnce(
create_value_fn
)
This object is used to memoize the computation of some function. Upon first
call, the user provided create_value_fn
is called and with the args/kwargs
provided to this object's __call__
. On subsequent calls the previous result
is returned and regardless of the args/kwargs provided to this object's
__call__
. To trigger a new evaluation, invoke this.reset()
and to
identify if a new evaluation will execute (on-demand) invoke
this.is_unset()
. For an example application of this object, see
help(tfp.experimental.nn.util.RandomVariable)
and/or
help(tfp.util.DeferredTensor)
.
Args | |
---|---|
create_value_fn
|
Python callable which takes any input args/kwargs and
returns a value to memoize. (The value is not presumed to be of any
particular type.)
|
Attributes | |
---|---|
create_value_fn
|
|
name
|
Returns the name of this module as passed or determined in the ctor. |
name_scope
|
Returns a tf.name_scope instance for this class.
|
non_trainable_variables
|
Sequence of non-trainable variables owned by this module and its submodules. |
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
value
|
|
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
is_unset
is_unset()
Returns True
if there is no memoized value and False
otherwise.
reset
reset()
Removes memoized value which triggers re-eval on subsequent reads.
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose
names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method
|
The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |
__call__
__call__(
*args, **kwargs
)
Return the memoized value.