View source on GitHub |
Probabilistic Layers.
Modules
conv_variational
module: Convolutional variational layers.
dense_variational
module: Dense variational layers.
dense_variational_v2
module: DenseVariational layer.
distribution_layer
module: Layers for combining tfp.distributions
and tf.keras
.
initializers
module: Keras initializers useful for TFP Keras layers.
masked_autoregressive
module: Layers for normalizing flows and masked autoregressive density estimation.
util
module: Utilities for probabilistic layers.
variable_input
module: VariableInputLayer.
weight_norm
module: Layer wrapper for weight normalization.
Classes
class AutoregressiveTransform
: An autoregressive normalizing flow layer.
class BlockwiseInitializer
: Initializer which concats other intializers.
class CategoricalMixtureOfOneHotCategorical
: A OneHotCategorical mixture Keras layer from k * (1 + d)
params.
class Convolution1DFlipout
: 1D convolution layer (e.g. temporal convolution) with Flipout.
class Convolution1DReparameterization
: 1D convolution layer (e.g. temporal convolution).
class Convolution2DFlipout
: 2D convolution layer (e.g. spatial convolution over images) with Flipout.
class Convolution2DReparameterization
: 2D convolution layer (e.g. spatial convolution over images).
class Convolution3DFlipout
: 3D convolution layer (e.g. spatial convolution over volumes) with Flipout.
class Convolution3DReparameterization
: 3D convolution layer (e.g. spatial convolution over volumes).
class DenseFlipout
: Densely-connected layer class with Flipout estimator.
class DenseLocalReparameterization
: Densely-connected layer class with local reparameterization estimator.
class DenseReparameterization
: Densely-connected layer class with reparameterization estimator.
class DenseVariational
: Dense layer with random kernel
and bias
.
class DistributionLambda
: Keras layer enabling plumbing TFP distributions through Keras models.
class IndependentBernoulli
: An Independent-Bernoulli Keras layer from prod(event_shape)
params.
class IndependentLogistic
: An independent logistic Keras layer.
class IndependentNormal
: An independent normal Keras layer.
class IndependentPoisson
: An independent Poisson Keras layer.
class KLDivergenceAddLoss
: Pass-through layer that adds a KL divergence penalty to the model loss.
class KLDivergenceRegularizer
: Regularizer that adds a KL divergence penalty to the model loss.
class MixtureLogistic
: A mixture distribution Keras layer, with independent logistic components.
class MixtureNormal
: A mixture distribution Keras layer, with independent normal components.
class MixtureSameFamily
: A mixture (same-family) Keras layer.
class MultivariateNormalTriL
: A d
-variate MVNTriL Keras layer from d + d * (d + 1) // 2
params.
class OneHotCategorical
: A d
-variate OneHotCategorical Keras layer from d
params.
class VariableLayer
: Simply returns a (trainable) variable, regardless of input.
class VariationalGaussianProcess
: A VariationalGaussianProcess Layer.
Functions
default_loc_scale_fn(...)
: Makes closure which creates loc
, scale
params from tf.get_variable
.
default_mean_field_normal_fn(...)
: Creates a function to build Normal distributions with trainable params.
default_multivariate_normal_fn(...)
: Creates multivariate standard Normal
distribution.