Implements the Numpy backend ops for a PC auto-batching VM.
| Attributes | 
|---|
| variable_class |  | 
Methods
any
View source
any(
    t, name=None
)
assert_matching_dtype
View source
assert_matching_dtype(
    expected_dtype, val, message=''
)
Asserts that the dtype of val matches expected_dtype.
| Args | 
|---|
| expected_dtype | A numpy dtype | 
| val | An object convertible to np.array | 
| message | Optional diagnostic message. | 
| Raises | 
|---|
| ValueError | If dtype does not match. | 
batch_size
View source
batch_size(
    val, name=None
)
Returns the first (batch) dimension of val.
broadcast_to_shape_of
View source
broadcast_to_shape_of(
    val, target, name=None
)
Broadcasts val to the shape of target.
| Args | 
|---|
| val | Python or Numpy array to be broadcast. Must be np.arraycompatible
and broadcast-compatible withtarget. | 
| target | Python or Numpy array whose shape we broadcast valto match. | 
| name | Optional name for the op. | 
| Returns | 
|---|
| broadcast_val | A np.ndarraywith shape matchingval + target. Provided
thatval's dimension sizes are all smaller or equal totarget's, the
returned value will be the shape oftarget. | 
cond
View source
cond(
    pred, true_fn, false_fn, name=None
)
Implements a conditional operation for the backend.
| Args | 
|---|
| pred | A Python or Numpy boolscalar indicating the condition. | 
| true_fn | A callable accepting and returning nests of np.ndarrays
with the same structure asstate, to be executed whenpredis True. | 
| false_fn | A callable accepting and returning nests of np.ndarrays with
the same structure asstate, to be executed whenpredis False. | 
| name | Optional name for the op. | 
| Returns | 
|---|
| state | Output state, matching nest structure of input argument state. | 
create_variable
View source
create_variable(
    name, alloc, type_, max_stack_depth, batch_size
)
Returns an intialized Variable.
| Args | 
|---|
| name | Name for the variable. | 
| alloc | VariableAllocationfor the variable. | 
| type_ | instructions.TensorTypedescribing the sub-batch shape and dtype
of the variable being created. | 
| max_stack_depth | Python int, the maximum stack depth to enforce. | 
| batch_size | Python int, the number of parallel threads being executed. | 
| Returns | 
|---|
| var | A new, initialized Variable object. | 
equal
View source
equal(
    t1, t2, name=None
)
Implements equality comparison for Numpy backend.
fill
View source
fill(
    value, size, dtype, shape, name=None
)
Fill a fresh batched Tensor of the given shape and dtype with value.
| Args | 
|---|
| value | Scalar to fill with. | 
| size | Scalar intTensorspecifying the number of VM threads. | 
| dtype | tf.DTypeof the zeros to be returned. | 
| shape | Rank 1 intTensor, the per-thread value shape. | 
| name | Optional name for the op. | 
| Returns | 
|---|
| result | Tensorofdtypevalues with shape[size, *shape] | 
full_mask
View source
full_mask(
    size, name=None
)
Returns an all-True mask np.ndarray with shape [size].
merge_dtypes
View source
merge_dtypes(
    dt1, dt2
)
Merges two dtypes, returning a compatible dtype.
| Args | 
|---|
| dt1 | A numpy dtype, or None. | 
| dt2 | A numpy dtype, or None. | 
| Returns | 
|---|
| dtype | The more precise numpy dtype (e.g. prefers int64 over int32). | 
merge_shapes
View source
merge_shapes(
    s1, s2
)
Merges two shapes, returning a broadcasted shape.
| Args | 
|---|
| s1 | A listof Pythonintor None. | 
| s2 | A listof Pythonintor None. | 
| Returns | 
|---|
| shape | A listof Pythonintor None. | 
| Raises | 
|---|
| ValueError | If s1ands2are not broadcast compatible. | 
not_equal
View source
not_equal(
    t1, t2, name=None
)
Implements inequality comparison for Numpy backend.
prepare_for_cond
View source
prepare_for_cond(
    state
)
Backend hook for preparing Tensors for cond.
Does nothing in the numpy backend (needed by the TensorFlow backend).
| Args | 
|---|
| state | A state to be prepared for use in conditionals. | 
| Returns | 
|---|
| state | The prepared state. | 
reduce_min
View source
reduce_min(
    t, name=None
)
Implements reduce_min for Numpy backend.
run_on_dummies
View source
run_on_dummies(
    primitive_callable, input_types
)
Runs the given primitive_callable with dummy input.
This is useful for examining the outputs for the purpose of type inference.
| Args | 
|---|
| primitive_callable | A python callable. | 
| input_types | listofinstructions.Typetype of each argument to the
callable.  Note that the containedTensorTypeobjects must match the
dimensions with which the primitive is to be invoked at runtime, even
though type inference conventionally does not store the batch dimension
in theTensorTypes. | 
| Returns | 
|---|
| outputs | pattern of backend-specific objects whose types may be
analyzed by the caller with type_of. | 
static_value
View source
static_value(
    t
)
Gets the eager/immediate value of t.
switch_case
View source
switch_case(
    branch_selector, branch_callables, name=None
)
Implements a switch (branch_selector) { case ... } construct.
type_of
View source
type_of(
    t, dtype_hint=None
)
Returns the instructions.Type of t.
| Args | 
|---|
| t | np.ndarrayor a Python constant. | 
| dtype_hint | dtype to prefer, if tis a constant. | 
where
View source
where(
    condition, x, y, name=None
)
Implements a where selector for the Numpy backend.
Extends tf.where to support broadcasting of on_false.
| Args | 
|---|
| condition | A boolnp.ndarray, either a vector having lengthy.shape[0]or matching the full shape ofy. | 
| x | np.ndarrayof values to take whenconditionisTrue. | 
| y | np.ndarrayof values to take whenconditionisFalse. May
be smaller thanx, as long as it is broadcast-compatible. | 
| name | Optional name for the op. | 
| Returns | 
|---|
| masked | A np.ndarraywhere indices corresponding toTruevalues inconditioncome from the corresponding value inx, and others come
fromy. | 
while_loop
View source
while_loop(
    cond, body, loop_vars, name=None
)
Implements while loops for Numpy backend.
wrap_straightline_callable
View source
wrap_straightline_callable(
    f
)
Method exists solely to be stubbed, i.e. for defun or XLA compile.