tfp.substrates.jax.distributions.GaussianProcess

Marginal distribution of a Gaussian process at finitely many points.

Inherits From: Distribution

A Gaussian process (GP) is an indexed collection of random variables, any finite collection of which are jointly Gaussian. While this definition applies to finite index sets, it is typically implicit that the index set is infinite; in applications, it is often some finite dimensional real or complex vector space. In such cases, the GP may be thought of as a distribution over (real- or complex-valued) functions defined over the index set.

Just as Gaussian distributions are fully specified by their first and second moments, a Gaussian process can be completely specified by a mean and covariance function. Let S denote the index set and K the space in which each indexed random variable takes its values (again, often R or C). The mean function is then a map m: S -> K, and the covariance function, or kernel, is a positive-definite function k: (S x S) -> K. The properties of functions drawn from a GP are entirely dictated (up to translation) by the form of the kernel function.

This Distribution represents the marginal joint distribution over function values at a given finite collection of points [x[1], ..., x[N]] from the index set S. By definition, this marginal distribution is just a multivariate normal distribution, whose mean is given by the vector [ m(x[1]), ..., m(x[N]) ] and whose covariance matrix is constructed from pairwise applications of the kernel function to the given inputs:

    | k(x[1], x[1])    k(x[1], x[2])  ...  k(x[1], x[N]) |
    | k(x[2], x[1])    k(x[2], x[2])  ...  k(x[2], x[N]) |
    |      ...              ...                 ...      |
    | k(x[N], x[1])    k(x[N], x[2])  ...  k(x[N], x[N]) |

For this to be a valid covariance matrix, it must be symmetric and positive definite; hence the requirement that k be a positive definite function (which, by definition, says that the above procedure will yield PD matrices).

We also support the inclusion of zero-mean Gaussian noise in the model, via the observation_noise_variance parameter. This augments the generative model to

f ~ GP(m, k)
(y[i] | f, x[i]) ~ Normal(f(x[i]), s)

where

  • m is the mean function
  • k is the covariance kernel function
  • f is the function drawn from the GP
  • x[i] are the index points at which the function is observed
  • y[i] are the observed values at the index points
  • s is the scale of the observation noise.

Note that this class represents an unconditional Gaussian process; it does not implement posterior inference conditional on observed function evaluations. This class is useful, for example, if one wishes to combine a GP prior with a non-conjugate likelihood using MCMC to sample from the posterior.

Mathematical Details

The probability density function (pdf) is a multivariate normal whose parameters are derived from the GP's properties:

pdf(x; index_points, mean_fn, kernel) = exp(-0.5 * y) / Z
K = (kernel.matrix(index_points, index_points) +
     observation_noise_variance * eye(N))
y = (x - mean_fn(index_points))^T @ K @ (x - mean_fn(index_points))
Z = (2 * pi)**(.5 * N) |det(K)|**(.5)

where:

  • index_points are points in the index set over which the GP is defined,
  • mean_fn is a callable mapping the index set to the GP's mean values,
  • kernel is PositiveSemidefiniteKernel-like and represents the covariance function of the GP,
  • observation_noise_variance represents (optional) observation noise.
  • eye(N) is an N-by-N identity matrix.

Examples

Draw joint samples from a GP prior
import numpy as np
from tensorflow_probability.python.internal.backend.jax.compat import v2 as tf
import tensorflow_probability as tfp; tfp = tfp.substrates.jax

tfd = tfp.distributions
psd_kernels = tfp.math.psd_kernels

num_points = 100
# Index points should be a collection (100, here) of feature vectors. In this
# example, we're using 1-d vectors, so we just need to reshape the output from
# np.linspace, to give a shape of (100, 1).
index_points = np.expand_dims(np.linspace(-1., 1., num_points), -1)

# Define a kernel with default parameters.
kernel = psd_kernels.ExponentiatedQuadratic()

gp = tfd.GaussianProcess(kernel, index_points)

samples = gp.sample(10)
# ==> 10 independently drawn, joint samples at `index_points`

noisy_gp = tfd.GaussianProcess(
    kernel=kernel,
    index_points=index_points,
    observation_noise_variance=.05)
noisy_samples = noisy_gp.sample(10)
# ==> 10 independently drawn, noisy joint samples at `index_points`
Optimize kernel parameters via maximum marginal likelihood.
# Suppose we have some data from a known function. Note the index points in
# general have shape `[b1, ..., bB, f1, ..., fF]` (here we assume `F == 1`),
# so we need to explicitly consume the feature dimensions (just the last one
# here).
f = lambda x: np.sin(10*x[..., 0]) * np.exp(-x[..., 0]**2)
observed_index_points = np.expand_dims(np.random.uniform(-1., 1., 50), -1)
# Squeeze to take the shape from [50, 1] to [50].
observed_values = f(observed_index_points)

# Define a kernel with trainable parameters.
kernel = psd_kernels.ExponentiatedQuadratic(
    amplitude=tf.Variable(1., dtype=np.float64, name='amplitude'),
    length_scale=tf.Variable(1., dtype=np.float64, name='length_scale'))

gp = tfd.GaussianProcess(kernel, observed_index_points)

optimizer = tf.optimizers.Adam()

@tf.function
def optimize():
  with tf.GradientTape() as tape:
    loss = -gp.log_prob(observed_values)
  grads = tape.gradient(loss, gp.trainable_variables)
  optimizer.apply_gradients(zip(grads, gp.trainable_variables))
  return loss

for i in range(1000):
  neg_log_likelihood = optimize()
  if i % 100 == 0:
    print("Step {}: NLL = {}".format(i, neg_log_likelihood))
print("Final NLL = {}".format(neg_log_likelihood))

kernel PositiveSemidefiniteKernel-like instance representing the GP's covariance function.
index_points (nested) Tensor representing finite (batch of) vector(s) of points in the index set over which the GP is defined. Shape (or shape of each nested component) has the form [b1, ..., bB, e, f1, ..., fF] where F is the number of feature dimensions and must equal kernel.feature_ndims (or its corresponding nested component) and e is the number (size) of index points in each batch. Ultimately this distribution corresponds to a e-dimensional multivariate normal. The batch shape must be broadcastable with kernel.batch_shape and any batch dims yielded by mean_fn.
mean_fn Python callable that acts on index_points to produce a (batch of) vector(s) of mean values at index_points. Takes a (nested) Tensor of shape [b1, ..., bB, e, f1, ..., fF] and returns a Tensor whose shape is broadcastable with [b1, ..., bB, e]. Default value: None implies constant zero function.
observation_noise_variance float Tensor representing (batch of) scalar variance(s) of the noise in the Normal likelihood distribution of the model. If batched, the batch shape must be broadcastable with the shapes of all other batched parameters (kernel.batch_shape, index_points, etc.). Default value: 0.
marginal_fn A Python callable that takes a location, covariance matrix, optional validate_args, allow_nan_stats and name arguments, and returns a multivariate normal subclass of tfd.Distribution. At most one of cholesky_fn and marginal_fn should be set. Default value: None, in which case a Cholesky-factorizing function is created using make_cholesky_factored_marginal_fn and the cholesky_fn argument.
cholesky_fn Callable which takes a single (batch) matrix argument and returns a Cholesky-like lower triangular factor. Default value: None, in which case make_cholesky_with_jitter_fn is used with the jitter parameter. At most one of cholesky_fn and marginal_fn should be set.
jitter float scalar Tensor added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix, when marginal_fn and cholesky_fn is None. This argument is ignored if cholesky_fn is set. Default value: 1e-6.
validate_args Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. Default value: False.
allow_nan_stats Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined. Default value: False.
parameters For subclasses, a dict of constructor arguments.
name Python str name prefixed to Ops created by this class. Default value: "GaussianProcess".
_check_marginal_cholesky_fn Internal parameter -- do not use.

ValueError if mean_fn is not None and is not callable.

allow_nan_stats Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

batch_shape Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

cholesky_fn

dtype The DType of Tensors handled by this Distribution.
event_shape Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

experimental_shard_axis_names The list or structure of lists of active shard axis names.
index_points

jitter

kernel

marginal_fn

mean_fn

name Name prepended to all ops created by this Distribution.
observation_noise_variance

parameters Dictionary of parameters used to instantiate this Distribution.
reparameterization_type Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

trainable_variables

validate_args Python bool indicating possibly expensive checks are enabled.
variables

Methods

batch_shape_tensor

View source

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
name name to give to the op

Returns
batch_shape Tensor.

cdf

View source

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
cdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

Creates a deep copy of the distribution.

Args
**override_parameters_kwargs String/value dictionary of initialization arguments to override with new values.

Returns
distribution A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
covariance Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shannon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

other types with built-in registrations: MultivariateNormalDiag, MultivariateNormalDiagPlusLowRank, MultivariateNormalFullCovariance, MultivariateNormalLinearOperator, MultivariateNormalTriL

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.

Returns
cross_entropy self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shannon) cross entropy.

entropy

View source

Shannon entropy in nats.

event_shape_tensor

View source

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args
name name to give to the op

Returns
event_shape Tensor.

experimental_default_event_space_bijector

View source

Bijector mapping the reals (R**n) to the event space of the distribution.

Distributions with continuous support may implement _default_event_space_bijector which returns a subclass of tfp.bijectors.Bijector that maps R**n to the distribution's event space. For example, the default bijector for the Beta distribution is tfp.bijectors.Sigmoid(), which maps the real line to [0, 1], the support of the Beta distribution. The default bijector for the CholeskyLKJ distribution is tfp.bijectors.CorrelationCholesky, which maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular matrices with ones along the diagonal.

The purpose of experimental_default_event_space_bijector is to enable gradient descent in an unconstrained space for Variational Inference and Hamiltonian Monte Carlo methods. Some effort has been made to choose bijectors such that the tails of the distribution in the unconstrained space are between Gaussian and Exponential.

For distributions with discrete event space, or for which TFP currently lacks a suitable bijector, this function returns None.

Args
*args Passed to implementation _default_event_space_bijector.
**kwargs Passed to implementation _default_event_space_bijector.

Returns
event_space_bijector Bijector instance or None.

experimental_fit

View source

Instantiates a distribution that maximizes the likelihood of x.

Args
value a Tensor valid sample from this distribution family.
sample_ndims Positive int Tensor number of leftmost dimensions of value that index i.i.d. samples. Default value: 1.
validate_args Python bool, default False. When True, distribution parameters are checked for validity despite possibly degrading runtime performance. When False, invalid inputs may silently render incorrect outputs. Default value: False.
**init_kwargs Additional keyword arguments passed through to cls.__init__. These take precedence in case of collision with the fitted parameters; for example, tfd.Normal.experimental_fit([1., 1.], scale=20.) returns a Normal distribution with scale=20. rather than the maximum likelihood parameter scale=0..

Returns
maximum_likelihood_instance instance of cls with parameters that maximize the likelihood of value.

experimental_local_measure

View source

Returns a log probability density together with a TangentSpace.

A TangentSpace allows us to calculate the correct push-forward density when we apply a transformation to a Distribution on a strict submanifold of R^n (typically via a Bijector in the TransformedDistribution subclass). The density correction uses the basis of the tangent space.

Args
value float or double Tensor.
backward_compat bool specifying whether to fall back to returning FullSpace as the tangent space, and representing R^n with the standard basis.
**kwargs Named arguments forwarded to subclass implementation.

Returns
log_prob a Tensor representing the log probability density, of shape sample_shape(x) + self.batch_shape with values of type self.dtype.
tangent_space a TangentSpace object (by default FullSpace) representing the tangent space to the manifold at value.

Raises
UnspecifiedTangentSpaceError if backward_compat is False and the _experimental_tangent_space attribute has not been defined.

experimental_sample_and_log_prob

View source

Samples from this distribution and returns the log density of the sample.

The default implementation simply calls sample and log_prob:

def _sample_and_log_prob(self, sample_shape, seed, **kwargs):
  x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs)
  return x, self.log_prob(x, **kwargs)

However, some subclasses may provide more efficient and/or numerically stable implementations.

Args
sample_shape integer Tensor desired shape of samples to draw. Default value: ().
seed PRNG seed; see tfp.random.sanitize_seed for details. Default value: None.
name name to give to the op. Default value: 'sample_and_log_prob'.
**kwargs Named arguments forwarded to subclass implementation.

Returns
samples a Tensor, or structure of Tensors, with prepended dimensions sample_shape.
log_prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

get_marginal_distribution

View source

Compute the marginal of this GP over function values at index_points.

Args
index_points (nested) Tensor representing finite (batch of) vector(s) of points in the index set over which the GP is defined. Shape (or the shape of each nested component) has the form [b1, ..., bB, e, f1, ..., fF] where F is the number of feature dimensions and must equal kernel.feature_ndims (or its corresponding nested component) and e is the number (size) of index points in each batch. Ultimately this distribution corresponds to a e-dimensional multivariate normal. The batch shape must be broadcastable with kernel.batch_shape and any batch dims yielded by mean_fn.

Returns
marginal a Normal distribution with vector event shape.

is_scalar_batch

View source

Indicates that batch_shape == [].

Args
name Python str prepended to names of ops created by this function.

Returns
is_scalar_batch bool scalar Tensor.

is_scalar_event

View source

Indicates that event_shape == [].

Args
name Python str prepended to names of ops created by this function.

Returns
is_scalar_event bool scalar Tensor.

kl_divergence

View source

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shannon) cross entropy, and H[.] denotes (Shannon) entropy.

other types with built-in registrations: MultivariateNormalDiag, MultivariateNormalDiagPlusLowRank, MultivariateNormalFullCovariance, MultivariateNormalLinearOperator, MultivariateNormalTriL

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.

Returns
kl_divergence self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

View source

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
logcdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

View source

Log probability density/mass function.

Additional documentation from GaussianProcess:

kwargs:
  • index_points: optional float Tensor representing a finite (batch of) of points in the index set over which this GP is defined. The shape (or shape of each nested component) has the form [b1, ..., bB, e,f1, ..., fF] where F is the number of feature dimensions and must equal self.kernel.feature_ndims (or its corresponding nested component) and e is the number of index points in each batch. Ultimately, this distribution corresponds to an e-dimensional multivariate normal. The batch shape must be broadcastable with kernel.batch_shape and any batch dims yieldedby mean_fn. If not specified, self.index_points is used. Default value: None.
  • is_missing: optional bool Tensor of shape [..., e], where e is the number of index points in each batch. Represents a batch of Boolean masks. When is_missing is not None, the returned log-prob is for the marginal distribution, in which all dimensions for which is_missing is True have been marginalized out. The batch dimensions of is_missing must broadcast with the sample and batch dimensions of value and of this Distribution. Default value: None.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
log_prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function

View source

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

View source

Mean.

mode

View source

Mode.

param_shapes

View source

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args
sample_shape Tensor or python list/tuple. Desired shape of a call to sample().
name name to prepend ops with.

Returns
dict of parameter name to Tensor shapes.

param_static_shapes

View source

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args
sample_shape TensorShape or python list/tuple. Desired shape of a call to sample().

Returns
dict of parameter name to TensorShape.

Raises
ValueError if sample_shape is a TensorShape and is not fully defined.

parameter_properties

View source

Returns a dict mapping constructor arg names to property annotations.

This dict should include an entry for each of the distribution's Tensor-valued constructor arguments.

Distribution subclasses are not required to implement _parameter_properties, so this method may raise NotImplementedError. Providing a _parameter_properties implementation enables several advanced features, including:

  • Distribution batch slicing (sliced_distribution = distribution[i:j]).
  • Automatic inference of _batch_shape and _batch_shape_tensor, which must otherwise be computed explicitly.
  • Automatic instantiation of the distribution within TFP's internal property tests.
  • Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference.

In the future, parameter property annotations may enable additional functionality; for example, returning Distribution instances from tf.vectorized_map.

Args
dtype Optional float dtype to assume for continuous-valued parameters. Some constraining bijectors require advance knowledge of the dtype because certain constants (e.g., tfb.Softplus.low) must be instantiated with the same dtype as the values to be transformed.
num_classes Optional int Tensor number of classes to assume when inferring the shape of parameters for categorical-like distributions. Otherwise ignored.

Returns
parameter_properties A str ->tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names toParameterProperties` instances.

Raises
NotImplementedError if the distribution class does not implement _parameter_properties.

posterior_predictive

View source

Return the posterior predictive distribution associated with this distribution.

Returns the posterior predictive distribution p(Y' | X, Y, X') where:

  • X' is predictive_index_points
  • X is self.index_points.
  • Y is observations.

This is equivalent to using the GaussianProcessRegressionModel.precompute_regression_model method.

Args
observations float Tensor representing collection, or batch of collections, of observations corresponding to self.index_points. Shape has the form [b1, ..., bB, e], which must be broadcastable with the batch and example shapes of self.index_points. The batch shape [b1, ..., bB] must be broadcastable with the shapes of all other batched parameters
predictive_index_points (nested) Tensor representing finite collection, or batch of collections, of points in the index set over which the GP is defined. Shape (or shape of each nested component) has the form [b1, ..., bB, e, f1, ..., fF] where F is the number of feature dimensions and must equal kernel.feature_ndims (or its corresponding nested component) and e is the number (size) of predictive index points in each batch. The batch shape must be broadcastable with this distributions batch_shape. Default value: None.
**kwargs Any other keyword arguments to pass / override.

Returns
gprm An instance of Distribution that represents the posterior predictive.

prob

View source

Probability density/mass function.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

quantile

View source

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
quantile a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args
sample_shape 0D or 1D int32 Tensor. Shape of the generated samples.
seed PRNG seed; see tfp.random.sanitize_seed for details.
name name to give to the op.
**kwargs Named arguments forwarded to subclass implementation.

Returns
samples a Tensor with prepended dimensions sample_shape.

stddev

View source

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
stddev Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

unnormalized_log_prob

View source

Potentially unnormalized log probability density/mass function.

This function is similar to log_prob, but does not require that the return value be normalized. (Normalization here refers to the total integral of probability being one, as it should be by definition for any probability distribution.) This is useful, for example, for distributions where the normalization constant is difficult or expensive to compute. By default, this simply calls log_prob.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
unnormalized_log_prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
variance Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

__getitem__

View source

Slices the batch axes of this distribution, returning a new instance.

b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.stateless_normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.stateless_normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]

Args
slices slices from the [] operator

Returns
dist A new tfd.Distribution instance with sliced parameters.

__iter__

View source