|  View source on GitHub | 
A generic probability distribution base class.
tfp.substrates.numpy.distributions.Distribution(
    dtype,
    reparameterization_type,
    validate_args,
    allow_nan_stats,
    parameters=None,
    graph_parents=None,
    name=None
)
Distribution is a base class for constructing and organizing properties
(e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian).
Subclassing
Subclasses are expected to implement a leading-underscore version of the
same-named function. The argument signature should be identical except for
the omission of name='...'. For example, to enable log_prob(value,
name='log_prob') a subclass should implement _log_prob(value).
Subclasses can append to public-level docstrings by providing docstrings for their method specializations. For example:
@distribution_util.AppendDocstring('Some other details.')
def _log_prob(self, value):
  ...
would add the string "Some other details." to the log_prob function
docstring. This is implemented as a simple decorator to avoid python
linter complaining about missing Args/Returns/Raises sections in the
partial docstrings.
TFP methods generally assume that Distribution subclasses implement at least the following methods:
- _sample_n.
- _log_probor- _prob.
- _event_shapeand- _event_shape_tensor.
- _parameter_propertiesOR- _batch_shapeand- _batch_shape_tensor.
Batch shape methods can be automatically derived from parameter_properties
in most cases, so it's usually not necessary to implement them directly.
Exceptions include Distributions that accept non-Tensor parameters (for
example, a distribution parameterized by a callable), or that have nonstandard
batch semantics (for example, BatchReshape).
Some functionality may depend on implementing additional methods. It is common for Distribution subclasses to implement:
- Relevant statistics, such as _mean,_mode,_varianceand/or_stddev.
- At least one of _log_cdf,_cdf,_survival_function, or_log_survival_function.
- _quantile.
- _entropy.
- _default_event_space_bijector.
- _parameter_properties(to support automatic batch shape derivation, batch slicing and other features).
- _sample_and_log_prob,
- _maximum_likelihood_parameters.
Note that subclasses of existing Distributions that redefine __init__ do
not automatically inherit
_parameter_properties annotations from their parent: the subclass must
explicitly implement its own _parameter_properties method to support the
features, such as batch slicing, that this enables.
Broadcasting, batching, and shapes
All distributions support batches of independent distributions of that type. The batch shape is determined by broadcasting together the parameters.
The shape of arguments to __init__, cdf, log_cdf, prob, and
log_prob reflect this broadcasting, as does the return value of sample.
sample_n_shape = [n] + batch_shape + event_shape, where sample_n_shape is
the shape of the Tensor returned from sample(n), n is the number of
samples, batch_shape defines how many independent distributions there are,
and event_shape defines the shape of samples from each of those independent
distributions. Samples are independent along the batch_shape dimensions, but
not necessarily so along the event_shape dimensions (depending on the
particulars of the underlying distribution).
Using the Uniform distribution as an example:
minval = 3.0
maxval = [[4.0, 6.0],
          [10.0, 12.0]]
# Broadcasting:
# This instance represents 4 Uniform distributions. Each has a lower bound at
# 3.0 as the `minval` parameter was broadcasted to match `maxval`'s shape.
u = Uniform(minval, maxval)
# `event_shape` is `TensorShape([])`.
event_shape = u.event_shape
# `event_shape_t` is a `Tensor` which will evaluate to [].
event_shape_t = u.event_shape_tensor()
# Sampling returns a sample per distribution. `samples` has shape
# [5, 2, 2], which is [n] + batch_shape + event_shape, where n=5,
# batch_shape=[2, 2], and event_shape=[].
samples = u.sample(5)
# The broadcasting holds across methods. Here we use `cdf` as an example. The
# same holds for `log_cdf` and the likelihood functions.
# `cum_prob` has shape [2, 2] as the `value` argument was broadcasted to the
# shape of the `Uniform` instance.
cum_prob_broadcast = u.cdf(4.0)
# `cum_prob`'s shape is [2, 2], one per distribution. No broadcasting
# occurred.
cum_prob_per_dist = u.cdf([[4.0, 5.0],
                           [6.0, 7.0]])
# INVALID as the `value` argument is not broadcastable to the distribution's
# shape.
cum_prob_invalid = u.cdf([4.0, 5.0, 6.0])
Shapes
There are three important concepts associated with TensorFlow Distributions shapes:
- Event shape describes the shape of a single draw from the distribution;
it may be dependent across dimensions. For scalar distributions, the event
shape is []. For a 5-dimensional MultivariateNormal, the event shape is[5].
- Batch shape describes independent, not identically distributed draws, aka a "collection" or "bunch" of distributions.
- Sample shape describes independent, identically distributed draws of batches from the distribution family.
The event shape and the batch shape are properties of a Distribution object,
whereas the sample shape is associated with a specific call to sample or
log_prob.
For detailed usage examples of TensorFlow Distributions shapes, see this tutorial
Parameter values leading to undefined statistics or distributions.
Some distributions do not have well-defined statistics for all initialization
parameter values. For example, the beta distribution is parameterized by
positive real numbers concentration1 and concentration0, and does not have
well-defined mode if concentration1 < 1 or concentration0 < 1.
The user is given the option of raising an exception or returning NaN.
a = tf.exp(tf.matmul(logits, weights_a))
b = tf.exp(tf.matmul(logits, weights_b))
# Will raise exception if ANY batch member has a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=False)
mode = dist.mode()
# Will return NaN for batch members with either a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=True)  # Default behavior
mode = dist.mode()
In all cases, an exception is raised if invalid parameters are passed, e.g.
# Will raise an exception if any Op is run.
negative_a = -1.0 * a  # beta distribution by definition has a > 0.
dist = distributions.beta(negative_a, b, allow_nan_stats=True)
dist.mean()
| Raises | |
|---|---|
| ValueError | if any member of graph_parents is Noneor not aTensor. | 
Methods
batch_shape_tensor
batch_shape_tensor(
    name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
| Args | |
|---|---|
| name | name to give to the op | 
| Returns | |
|---|---|
| batch_shape | Tensor. | 
cdf
cdf(
    value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
cdf(x) := P[X <= x]
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| cdf | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
copy
copy(
    **override_parameters_kwargs
)
Creates a deep copy of the distribution.
| Args | |
|---|---|
| **override_parameters_kwargs | String/value dictionary of initialization arguments to override with new values. | 
| Returns | |
|---|---|
| distribution | A new instance of type(self)initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,dict(self.parameters, **override_parameters_kwargs). | 
covariance
covariance(
    name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov is a (batch of) k' x k' matrices,
0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function
mapping indices of this distribution's event dimensions to indices of a
length-k' vector.
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| covariance | Floating-point Tensorwith shape[B1, ..., Bn, k', k']where the firstndimensions are batch coordinates andk' = reduce_prod(self.event_shape). | 
cross_entropy
cross_entropy(
    other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self) by P and the other distribution by
Q. Assuming P, Q are absolutely continuous with respect to
one another and permit densities p(x) dr(x) and q(x) dr(x), (Shannon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F denotes the support of the random variable X ~ P.
| Args | |
|---|---|
| other | tfp.distributions.Distributioninstance. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| cross_entropy | self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of (Shannon) cross entropy. | 
entropy
entropy(
    name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
    name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor.
| Args | |
|---|---|
| name | name to give to the op | 
| Returns | |
|---|---|
| event_shape | Tensor. | 
experimental_default_event_space_bijector
experimental_default_event_space_bijector(
    *args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement
_default_event_space_bijector which returns a subclass of
tfp.bijectors.Bijector that maps R**n to the distribution's event space.
For example, the default bijector for the Beta distribution
is tfp.bijectors.Sigmoid(), which maps the real line to [0, 1], the
support of the Beta distribution. The default bijector for the
CholeskyLKJ distribution is tfp.bijectors.CorrelationCholesky, which
maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular
matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector is
to enable gradient descent in an unconstrained space for Variational
Inference and Hamiltonian Monte Carlo methods. Some effort has been made to
choose bijectors such that the tails of the distribution in the
unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently
lacks a suitable bijector, this function returns None.
| Args | |
|---|---|
| *args | Passed to implementation _default_event_space_bijector. | 
| **kwargs | Passed to implementation _default_event_space_bijector. | 
| Returns | |
|---|---|
| event_space_bijector | Bijectorinstance orNone. | 
experimental_fit
@classmethodexperimental_fit( value, sample_ndims=1, validate_args=False, **init_kwargs )
Instantiates a distribution that maximizes the likelihood of x.
| Args | |
|---|---|
| value | a Tensorvalid sample from this distribution family. | 
| sample_ndims | Positive intTensor number of leftmost dimensions ofvaluethat index i.i.d. samples.
Default value:1. | 
| validate_args | Python bool, defaultFalse. WhenTrue, distribution
parameters are checked for validity despite possibly degrading runtime
performance. WhenFalse, invalid inputs may silently render incorrect
outputs.
Default value:False. | 
| **init_kwargs | Additional keyword arguments passed through to cls.__init__. These take precedence in case of collision with the
fitted parameters; for example,tfd.Normal.experimental_fit([1., 1.], scale=20.)returns a Normal
distribution withscale=20.rather than the maximum likelihood
parameterscale=0.. | 
| Returns | |
|---|---|
| maximum_likelihood_instance | instance of clswith parameters that
maximize the likelihood ofvalue. | 
experimental_local_measure
experimental_local_measure(
    value, backward_compat=False, **kwargs
)
Returns a log probability density together with a TangentSpace.
A TangentSpace allows us to calculate the correct push-forward
density when we apply a transformation to a Distribution on
a strict submanifold of R^n (typically via a Bijector in the
TransformedDistribution subclass). The density correction uses
the basis of the tangent space.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| backward_compat | boolspecifying whether to fall back to returningFullSpaceas the tangent space, and representing R^n with the standard
 basis. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| log_prob | a Tensorrepresenting the log probability density, of shapesample_shape(x) + self.batch_shapewith values of typeself.dtype. | 
| tangent_space | a TangentSpaceobject (by defaultFullSpace)
representing the tangent space to the manifold atvalue. | 
| Raises | |
|---|---|
| UnspecifiedTangentSpaceError if backward_compatis False and
the_experimental_tangent_spaceattribute has not been defined. | 
experimental_sample_and_log_prob
experimental_sample_and_log_prob(
    sample_shape=(), seed=None, name='sample_and_log_prob', **kwargs
)
Samples from this distribution and returns the log density of the sample.
The default implementation simply calls sample and log_prob:
def _sample_and_log_prob(self, sample_shape, seed, **kwargs):
  x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs)
  return x, self.log_prob(x, **kwargs)
However, some subclasses may provide more efficient and/or numerically stable implementations.
| Args | |
|---|---|
| sample_shape | integer Tensordesired shape of samples to draw.
Default value:(). | 
| seed | PRNG seed; see tfp.random.sanitize_seedfor details.
Default value:None. | 
| name | name to give to the op.
Default value: 'sample_and_log_prob'. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| samples | a Tensor, or structure ofTensors, with prepended dimensionssample_shape. | 
| log_prob | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
is_scalar_batch
is_scalar_batch(
    name='is_scalar_batch'
)
Indicates that batch_shape == [].
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| is_scalar_batch | boolscalarTensor. | 
is_scalar_event
is_scalar_event(
    name='is_scalar_event'
)
Indicates that event_shape == [].
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| is_scalar_event | boolscalarTensor. | 
kl_divergence
kl_divergence(
    other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self) by p and the other distribution by
q. Assuming p, q are absolutely continuous with respect to reference
measure r, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]
where F denotes the support of the random variable X ~ p, H[., .]
denotes (Shannon) cross entropy, and H[.] denotes (Shannon) entropy.
| Args | |
|---|---|
| other | tfp.distributions.Distributioninstance. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| kl_divergence | self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of the Kullback-Leibler
divergence. | 
log_cdf
log_cdf(
    value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| logcdf | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
log_prob
log_prob(
    value, name='log_prob', **kwargs
)
Log probability density/mass function.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| log_prob | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
log_survival_function
log_survival_function(
    value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype. | 
mean
mean(
    name='mean', **kwargs
)
Mean.
mode
mode(
    name='mode', **kwargs
)
Mode.
param_shapes
@classmethodparam_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample().
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample().
Subclasses should override class method _param_shapes.
| Args | |
|---|---|
| sample_shape | Tensoror python list/tuple. Desired shape of a call tosample(). | 
| name | name to prepend ops with. | 
| Returns | |
|---|---|
| dictof parameter name toTensorshapes. | 
param_static_shapes
@classmethodparam_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample(). Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes to return
constant-valued tensors when constant values are fed.
| Args | |
|---|---|
| sample_shape | TensorShapeor python list/tuple. Desired shape of a call
tosample(). | 
| Returns | |
|---|---|
| dictof parameter name toTensorShape. | 
| Raises | |
|---|---|
| ValueError | if sample_shapeis aTensorShapeand is not fully defined. | 
parameter_properties
@classmethodparameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution's
Tensor-valued constructor arguments.
Distribution subclasses are not required to implement
_parameter_properties, so this method may raise NotImplementedError.
Providing a _parameter_properties implementation enables several advanced
features, including:
- Distribution batch slicing (sliced_distribution = distribution[i:j]).
- Automatic inference of _batch_shapeand_batch_shape_tensor, which must otherwise be computed explicitly.
- Automatic instantiation of the distribution within TFP's internal property tests.
- Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference.
In the future, parameter property annotations may enable additional
functionality; for example, returning Distribution instances from
tf.vectorized_map.
| Args | |
|---|---|
| dtype | Optional float dtypeto assume for continuous-valued parameters.
Some constraining bijectors require advance knowledge of the dtype
because certain constants (e.g.,tfb.Softplus.low) must be
instantiated with the same dtype as the values to be transformed. | 
| num_classes | Optional intTensornumber of classes to assume when
inferring the shape of parameters for categorical-like distributions.
Otherwise ignored. | 
| Returns | |
|---|---|
| parameter_properties | A str ->tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names toParameterProperties`
instances. | 
| Raises | |
|---|---|
| NotImplementedError | if the distribution class does not implement _parameter_properties. | 
prob
prob(
    value, name='prob', **kwargs
)
Probability density/mass function.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| prob | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
quantile
quantile(
    value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X and p in [0, 1], the quantile is:
quantile(p) := x such that P[X <= x] == p
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| quantile | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
sample
sample(
    sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample() without arguments will generate a single
sample.
| Args | |
|---|---|
| sample_shape | 0D or 1D int32Tensor. Shape of the generated samples. | 
| seed | PRNG seed; see tfp.random.sanitize_seedfor details. | 
| name | name to give to the op. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| samples | a Tensorwith prepended dimensionssample_shape. | 
stddev
stddev(
    name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape.
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| stddev | Floating-point Tensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean(). | 
survival_function
survival_function(
    value, name='survival_function', **kwargs
)
Survival function.
Given random variable X, the survival function is defined:
survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype. | 
unnormalized_log_prob
unnormalized_log_prob(
    value, name='unnormalized_log_prob', **kwargs
)
Potentially unnormalized log probability density/mass function.
This function is similar to log_prob, but does not require that the
return value be normalized.  (Normalization here refers to the total
integral of probability being one, as it should be by definition for any
probability distribution.)  This is useful, for example, for distributions
where the normalization constant is difficult or expensive to compute.  By
default, this simply calls log_prob.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| unnormalized_log_prob | a Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype. | 
variance
variance(
    name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape.
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| **kwargs | Named arguments forwarded to subclass implementation. | 
| Returns | |
|---|---|
| variance | Floating-point Tensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean(). | 
__getitem__
__getitem__(
    slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]
x = tf.random.stateless_normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.stateless_normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]
| Args | |
|---|---|
| slices | slices from the [] operator | 
| Returns | |
|---|---|
| dist | A new tfd.Distributioninstance with sliced parameters. | 
__iter__
__iter__()