View source on GitHub
  
 | 
Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.compat.v1.tpu.experimental.StochasticGradientDescentParameters(
    learning_rate, clip_weight_min=None, clip_weight_max=None,
    weight_decay_factor=None, multiply_weight_decay_factor_by_learning_rate=None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the
optimization_parameters argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=(
            tf.tpu.experimental.StochasticGradientDescentParameters(0.1))))
Args | |
|---|---|
learning_rate
 | 
a floating point value. The learning rate. | 
clip_weight_min
 | 
the minimum value to clip by; None means -infinity. | 
clip_weight_max
 | 
the maximum value to clip by; None means +infinity. | 
weight_decay_factor
 | 
amount of weight decay to apply; None means that the weights are not decayed. | 
multiply_weight_decay_factor_by_learning_rate
 | 
if true,
weight_decay_factor is multiplied by the current learning rate.
 | 
    View source on GitHub