tf.distribute.MirroredStrategy

TensorFlow 1 version View source on GitHub

Synchronous training across multiple replicas on one machine.

Inherits From: Strategy

This strategy is typically used for training on one machine with multiple GPUs. For TPUs, use tf.distribute.TPUStrategy. To use MirroredStrategy with multiple workers, please refer to tf.distribute.experimental.MultiWorkerMirroredStrategy.

For example, a variable created under a MirroredStrategy is a MirroredVariable. If no devices are specified in the constructor argument of the strategy then it will use all the available GPUs. If no GPUs are found, it will use the available CPUs. Note that TensorFlow treats all CPUs on a machine as a single device, and uses threads internally for parallelism.

strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
  x = tf.Variable(1.)
x
MirroredVariable:{
    0: <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=1.0>
  }

While using distribution strategies, all the variable creation should be done within the strategy's scope. This will replicate the variables across all the replicas and keep them in sync using an all-reduce algorithm.

Variables created inside a MirroredStrategy which is wrapped with a tf.function are still MirroredVariables.

x = []
@tf.function  # Wrap the function with tf.function.
def create_variable():
  if not x:
    x.append(tf.Variable(1.))
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
  create_variable()
  print (x[0])
MirroredVariable:{
    0: <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=1.0>
  }

experimental_distribute_dataset can be used to distribute the dataset across the replicas when writing your own training loop. If you are using .fit and .compile methods available in tf.keras, then tf.keras will handle the distribution for you.

For example:

my_strategy = tf.distribute.MirroredStrategy()
with my_strategy.scope():
  @tf.function
  def distribute_train_epoch(dataset):
    def replica_fn(input):
      # process input and return result
      return result

    total_result = 0
    for x in dataset:
      per_replica_result = my_strategy.run(replica_fn, args=(x,))
      total_result += my_strategy.reduce(tf.distribute.ReduceOp.SUM,
                                         per_replica_result, axis=None)
    return total_result

  dist_dataset = my_strategy.experimental_distribute_dataset(dataset)
  for _ in range(EPOCHS):
    train_result = distribute_train_epoch(dist_dataset)

devices a list of device strings such as ['/gpu:0', '/gpu:1']. If None, all available GPUs are used. If no GPUs are found, CPU is used.
cross_device_ops optional, a descedant of CrossDeviceOps. If this is not set, NcclAllReduce() will be used by default. One would customize this if NCCL isn't available or if a special implementation that exploits the particular hardware is available.

cluster_resolver Returns the cluster resolver associated with this strategy.

In general, when using a multi-worker tf.distribute strategy such as tf.distribute.experimental.MultiWorkerMirroredStrategy or tf.distribute.experimental.TPUStrategy(), there is a tf.distribute.cluster_resolver.ClusterResolver associated with the strategy used, and such an instance is returned by this property.

Strategies that intend to have an associated tf.distribute.cluster_resolver.ClusterResolver must set the relevant attribute, or override this property; otherwise, None is returned by default. Those strategies should also provide information regarding what is returned by this property.

Single-worker strategies usually do not have a tf.distribute.cluster_resolver.ClusterResolver, and in those cases this property will return None.

The tf.distribute.cluster_resolver.ClusterResolver may be useful when the user needs to access information such as the cluster spec, task type or task id. For example,


os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["localhost:12345", "localhost:23456"],
'ps': ["localhost:34567"]
},
'task': {'type': 'worker', 'index': 0}
})

# This implicitly uses TF_CONFIG for the cluster and current task info.
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

...

if strategy.cluster_resolver.task_type == 'worker':
# Perform something that's only applicable on workers. Since we set this
# as a worker above, this block will run on this particular instance.
elif strategy.cluster_resolver.task_type == 'ps':
# Perform something that's only applicable on parameter servers. Since we
# set this as a worker above, this block will not run on this particular
# instance.

For more information, please see tf.distribute.cluster_resolver.ClusterResolver's API docstring.

extended tf.distribute.StrategyExtended with additional methods.
num_replicas_in_sync Returns number of replicas over which gradients are aggregated.

Methods

experimental_assign_to_logical_device

View source

Adds annotation that tensor will be assigned to a logical device.


# Initializing TPU system with 2 logical devices and 4 replicas.
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(resolver)
topology = tf.tpu.experimental.initialize_tpu_system(resolver)
device_assignment = tf.tpu.experimental.DeviceAssignment.build(
    topology,
    computation_shape=[1, 1, 1, 2],
    num_replicas=4)
strategy = tf.distribute.TPUStrategy(
    resolver, experimental_device_assignment=device_assignment)
iterator = iter(inputs)

@tf.function()
def step_fn(inputs):
  output = tf.add(inputs, inputs)

  # Add operation will be executed on logical device 0.
  output = strategy.experimental_assign_to_logical_device(output, 0)
  return output

strategy.run(step_fn, args=(next(iterator),))

Args
tensor Input tensor to annotate.
logical_device_id Id of the logical core to which the tensor will be assigned.

Raises
ValueError The logical device id presented is not consistent with total number of partitions specified by the device assignment.

Returns
Annotated tensor with idential value as tensor.

experimental_distribute_dataset

View source

Creates tf.distribute.DistributedDataset from tf.data.Dataset.

The returned tf.distribute.DistributedDataset can be iterated over similar to how regular datasets can. NOTE: The user cannot add any more transformations to a tf.distribute.DistributedDataset.

The following is an example:

strategy = tf.distribute.MirroredStrategy()

# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
  "/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])

# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)

# Iterate over the `tf.distribute.DistributedDataset`
for x in dist_dataset:
  # process dataset elements
  strategy.run(replica_fn, args=(x,))

In the code snippet above, the tf.distribute.DistributedDataset dist_dataset is batched by GLOBAL_BATCH_SIZE, and we iterate through it using for x in dist_dataset. x a tf.distribute.DistributedValues containing data for all replicas, which aggregates to a batch of GLOBAL_BATCH_SIZE. tf.distribute.Strategy.run will take care of feeding the right per-replica data in x to the right replica_fn executed on each replica.

What's under the hood of this method, when we say the tf.data.Dataset instance - dataset - gets distributed? It depends on how you set the tf.data.experimental.AutoShardPolicy through tf.data.experimental.DistributeOptions. By default, it is set to tf.data.experimental.AutoShardPolicy.AUTO. In a multi-worker setting, we will first attempt to distribute dataset by detecting whether dataset is being created out of reader datasets (e.g. tf.data.TFRecordDataset, tf.data.TextLineDataset, etc.) and if so, try to shard the input files. Note that there has to be at least one input file per worker. If you have less than one input file per worker, we suggest that you disable dataset sharding across workers, by setting the tf.data.experimental.DistributeOptions.auto_shard_policy to be tf.data.experimental.AutoShardPolicy.OFF.

If the attempt to shard by file is unsuccessful (i.e. the dataset is not read from files), we will shard the dataset evenly at the end by appending a .shard operation to the end of the processing pipeline. This will cause the entire preprocessing pipeline for all the data to be run on every worker, and each worker will do redundant work. We will print a warning if this route is selected.

As mentioned before, within each worker, we will also split the data among all the worker devices (if more than one a present). This will happen even if multi-worker sharding is disabled.

If the above batch splitting and dataset sharding logic is undesirable, please use tf.distribute.Strategy.experimental_distribute_datasets_from_function instead, which does not do any automatic splitting or sharding.

You can also use the element_spec property of the tf.distribute.DistributedDataset instance returned by this API to query the tf.TypeSpec of the elements returned by the iterator. This can be used to set the input_signature property of a tf.function.

strategy = tf.distribute.MirroredStrategy()

# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
  "/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])

# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)

@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(inputs):
  # train model with inputs
  return

# Iterate over the `tf.distribute.DistributedDataset`
for x in dist_dataset:
  # process dataset elements
  strategy.run(train_step, args=(x,))

Args
dataset tf.data.Dataset that will be sharded across all replicas using the rules stated above.
options tf.distribute.InputOptions used to control options on how this dataset is distributed.