Returns the min of x and y (i.e. x < y ? x : y) element-wise.
tf.raw_ops.Minimum(
    x, y, name=None
)
Both inputs are number-type tensors (except complex).  minimum expects that
both tensors have the same dtype.
Examples:
x = tf.constant([0., 0., 0., 0.])y = tf.constant([-5., -2., 0., 3.])tf.math.minimum(x, y)<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>
Note that minimum supports broadcast semantics.
x = tf.constant([-5., 0., 0., 0.])y = tf.constant([-3.])tf.math.minimum(x, y)<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)>
If inputs are not tensors, they will be converted to tensors.  See
tf.convert_to_tensor.
x = tf.constant([-3.], dtype=tf.float32)tf.math.minimum([-5], x)<tf.Tensor: shape=(1,), dtype=float32, numpy=array([-5.], dtype=float32)>
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int16,int32,int64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. |