Creates a dataset that applies f to the outputs of input_dataset.
tf.raw_ops.ExperimentalParallelInterleaveDataset(
    input_dataset, other_arguments, cycle_length, block_length, sloppy,
    buffer_output_elements, prefetch_input_elements, f, output_types, output_shapes,
    name=None
)
The resulting dataset is similar to the InterleaveDataset, with the exception
that if retrieving the next value from a dataset would cause the requester to
block, it will skip that input dataset. This dataset is especially useful
when loading data from a variable-latency datastores (e.g. HDFS, GCS), as it
allows the training step to proceed so long as some data is available.
!! WARNING !! This dataset is not deterministic!
Args | |
|---|---|
input_dataset
 | 
A Tensor of type variant.
 | 
other_arguments
 | 
A list of Tensor objects.
 | 
cycle_length
 | 
A Tensor of type int64.
 | 
block_length
 | 
A Tensor of type int64.
 | 
sloppy
 | 
A Tensor of type bool.
 | 
buffer_output_elements
 | 
A Tensor of type int64.
 | 
prefetch_input_elements
 | 
A Tensor of type int64.
 | 
f
 | 
A function decorated with @Defun.
A function mapping elements of input_dataset, concatenated with
other_arguments, to a Dataset variant that contains elements matching
output_types and output_shapes.
 | 
output_types
 | 
A list of tf.DTypes that has length >= 1.
 | 
output_shapes
 | 
A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1.
 | 
name
 | 
A name for the operation (optional). | 
Returns | |
|---|---|
A Tensor of type variant.
 |