View source on GitHub
  
 | 
An in-process tf.data service dispatch server.
tf.data.experimental.service.DispatchServer(
    port, protocol=None, start=True
)
A tf.data.experimental.service.DispatchServer coordinates a cluster of
tf.data.experimental.service.WorkerServers. When the workers start, they
register themselves with the dispatcher.
dispatcher = tf.data.experimental.service.DispatchServer(port=0)dispatcher_address = dispatcher.target.split("://")[1]worker = tf.data.experimental.service.WorkerServer(port=0, dispatcher_address=dispatcher_address)dataset = tf.data.Dataset.range(10)dataset = dataset.apply(tf.data.experimental.service.distribute(processing_mode="parallel_epochs", service=dispatcher.target))print(list(dataset.as_numpy_iterator()))[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
When starting a dedicated tf.data dispatch process, use join() to block indefinitely after starting up the server.
dispatcher = tf.data.experimental.service.DispatchServer(port=5050)
dispatcher.join()
Args | |
|---|---|
port
 | 
Specifies the port to bind to. | 
protocol
 | 
(Optional.) Specifies the protocol to be used by the server.
Acceptable values include "grpc", "grpc+local". Defaults to "grpc".
 | 
start
 | 
(Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True.
 | 
Raises | |
|---|---|
tf.errors.OpError
 | 
Or one of its subclasses if an error occurs while creating the TensorFlow server. | 
Attributes | |
|---|---|
target
 | 
Returns a target that can be used to connect to the server.
 The returned string will be in the form protocol://address, e.g. "grpc://localhost:5050".  | 
Methods
join
join()
Blocks until the server has shut down.
This is useful when starting a dedicated dispatch process.
dispatcher = tf.data.experimental.service.DispatchServer(port=5050)
dispatcher.join()
| Raises | |
|---|---|
tf.errors.OpError
 | 
Or one of its subclasses if an error occurs while joining the server. | 
start
start()
Starts this server.
dispatcher = tf.data.experimental.service.DispatchServer(port=0,start=False)dispatcher.start()
| Raises | |
|---|---|
tf.errors.OpError
 | 
Or one of its subclasses if an error occurs while starting the server. | 
    View source on GitHub