Save the date! Google I/O returns May 18-20 Register now


TensorFlow 1 version View source on GitHub

Linear Model for regression and classification problems.

Inherits From: Model

This model approximates the following function:

$$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$



is the bias and


is the weight for each feature.


model = LinearModel()
model.compile(optimizer='sgd', loss='mse'), y, epochs=epochs)

This model accepts sparse float inputs as well:


model = LinearModel()
opt = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.MeanSquaredError()
with tf.GradientTape() as tape:
  output = model(sparse_input)
  loss = tf.reduce_mean(loss_fn(target, output))
grads = tape.gradient(loss, model.weights)
opt.apply_gradients(zip(grads, model.weights))

units Positive integer, output dimension without the batch size.
activation Activation function to use. If you don't specify anything, no activation is applied.
use_bias whether to calculate the bias/intercept for this model. If set to False, no bias/intercept will be used in calculations, e.g., the data is already centered.
kernel_initializer Initializer for the kernel weights matrices.
bias_initializer Initializer for the bias vector.
kernel_regularizer regularizer for kernel vectors.
bias_regularizer regularizer for bias vector.
**kwargs The keyword arguments that are passed on to BaseLayer.init.

distribute_strategy The tf.distribute.Strategy this model was created under.

metrics_names Returns the model's display labels for all outputs.

inputs = tf.keras.layers.Input(shape=(3,))
outputs = tf.keras.layers.Dense(2)(inputs)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer="Adam", loss="mse", metrics=["mae"])
x = np.random.random((2, 3))
y = np.random.randint(0, 2, (2, 2)), y)
['loss', 'mae']
inputs = tf.keras.layers.Input(shape=(3,))
d = tf.keras.layers.Dense(2, name='out')
output_1 = d(inputs)
output_2 = d(inputs)
model = tf.keras.models.Model(
   inputs=inputs, outputs=[output_1, output_2])
model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"]), (y, y))
['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae',

run_eagerly Settable attribute indicating whether the model should run eagerly.

Running eagerly means that your model will be run step by step, like Python code. Your model might run slower, but it should become easier for you to debug it by stepping into individual layer calls.

By default, we will attempt to compile your model to a static graph to deliver the best execution performance.



View source

Configures the model for training.

optimizer String (name of optimizer) or optimizer instance. See tf.keras.optimizers.
loss String (name of objective function), objective function or tf.keras.losses.Loss instance. See tf.keras.losses. An objective function is any callable with the signature loss = fn(y_true, y_pred), where y_true = ground truth values with shape = [batch_size, d0, .. dN], except sparse loss functions such as sparse categorical crossentropy where shape = [batch_size, d0, .. dN-1]. y_pred = predicted values with shape = [batch_size, d0, .. dN]. It returns a weighted loss float tensor. If a custom Loss instance is used and reduction is set to NONE, return value has the shape [batch_size, d0, .. dN-1] ie. per-sample or per-timestep loss values; otherwise, it is a scalar. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.
metrics List of metrics to be evaluated by the model during training and testing. Each of this can be a string (name of a built-in function), function or a tf.keras.metrics.Metric instance. See tf.keras.metrics. Typically you will use metrics=['accuracy']. A function is any callable with the signature result = fn(y_true, y_pred). To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}. You can also pass a list (len = len(outputs)) of lists of metrics such as metrics=[['accuracy'], ['accuracy', 'mse']] or metrics=['accuracy', ['accuracy', 'mse']]. When you pass the strings 'accuracy' or 'acc', we convert this to one of tf.keras.metrics.BinaryAccuracy, tf.keras.metrics.CategoricalAccuracy, tf.keras.metrics.SparseCategoricalAccuracy based on the loss function used and the model output shape. We do a similar conversion for the strings 'crossentropy' and 'ce' as well.
loss_weights Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the weighted sum of all individual losses, weighted by the loss_weights coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a dict, it is expected to map output names (strings) to scalar coefficients.
weighted_metrics List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing.
run_eagerly Bool. Defaults to False. If True, this Model's logic will not be wrapped in a tf.function. Recommended to leave this as None unless your Model cannot be run inside a tf.function.
**kwargs Any additional arguments. Supported arguments:

  • experimental_steps_per_execution: Int. The number of batches to run during each tf.function call. Running multiple batches inside a single tf.function call can greatly improve performance on TPUs or small models with a large Python overhead. Note that if this value is set to N, Callback.on_batch methods will only be called every N batches. This currently defaults to 1. At most, one full epoch will be run each execution. If a number larger than the size of the epoch is passed, the execution will be truncated to the size of the epoch.
  • sample_weight_mode for backward compatibility.

ValueError In case of invalid arguments for optimizer, loss or metrics.


View source

Returns the loss value & metrics values for the model in test mode.

Computation is done in batches (see the batch_size arg.)

x Input data. It could be:

  • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
  • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
  • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
  • A dataset. Should return a tuple of either (inputs, targets) or (inputs, targets, sample_weights).
  • A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample_weights). A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given in the Unpacking behavior for iterator-like inputs section of
y Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, generator or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from the iterator/dataset).
batch_size Integer or None. Number of samples per batch of computation. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of a dataset, generators, or keras.utils.Sequence instances (since they generate batches).
verbose 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar.
sample_weight Optional Numpy array of weights for the test samples, used for weighting the loss function. You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. This argument is not supported when x is a dataset, instead pass sample weights as the third element of x.
steps Integer or None. Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of None. If x is a dataset and steps is None, 'evaluate' will run until the dataset is exhausted. This argument is not supported with array inputs.
callbacks List of keras.callbacks.Callback instances. List of callbacks to apply during evaluation. See callbacks.
max_queue_size Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
workers Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If un