Initializer that generates a truncated normal distribution.
tf.compat.v1.truncated_normal_initializer(
    mean=0.0, stddev=1.0, seed=None, dtype=tf.dtypes.float32
)
These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.
Args | 
mean
 | 
a python scalar or a scalar tensor. Mean of the random values to
generate.
 | 
stddev
 | 
a python scalar or a scalar tensor. Standard deviation of the random
values to generate.
 | 
seed
 | 
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
 | 
dtype
 | 
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
 | 
Methods
from_config
View source
@classmethod
from_config(
    config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | 
config
 | 
A Python dictionary. It will typically be the output of
get_config.
 | 
| Returns | 
| 
An Initializer instance.
 | 
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | 
| 
A JSON-serializable Python dict.
 | 
__call__
View source
__call__(
    shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | 
shape
 | 
Shape of the tensor.
 | 
dtype
 | 
Optional dtype of the tensor. If not provided use the initializer
dtype.
 | 
partition_info
 | 
Optional information about the possible partitioning of a
tensor.
 |