tf.keras.applications.VGG16
Stay organized with collections
Save and categorize content based on your preferences.
Instantiates the VGG16 model.
tf.keras.applications.VGG16(
include_top=True, weights='imagenet', input_tensor=None, input_shape=None,
pooling=None, classes=1000, classifier_activation='softmax'
)
Reference paper:
By default, it loads weights pre-trained on ImageNet. Check 'weights' for
other options.
This model can be built both with 'channels_first' data format
(channels, height, width) or 'channels_last' data format
(height, width, channels).
The default input size for this model is 224x224.
Arguments |
include_top
|
whether to include the 3 fully-connected
layers at the top of the network.
|
weights
|
one of None (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
|
input_tensor
|
optional Keras tensor
(i.e. output of layers.Input() )
to use as image input for the model.
|
input_shape
|
optional shape tuple, only to be specified
if include_top is False (otherwise the input shape
has to be (224, 224, 3)
(with channels_last data format)
or (3, 224, 224) (with channels_first data format).
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. (200, 200, 3) would be one valid value.
|
pooling
|
Optional pooling mode for feature extraction
when include_top is False .
None means that the output of the model will be
the 4D tensor output of the
last convolutional block.
avg means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
max means that global max pooling will
be applied.
|
classes
|
optional number of classes to classify images
into, only to be specified if include_top is True, and
if no weights argument is specified.
|
classifier_activation
|
A str or callable. The activation function to use
on the "top" layer. Ignored unless include_top=True . Set
classifier_activation=None to return the logits of the "top" layer.
|
Raises |
ValueError
|
in case of invalid argument for weights ,
or invalid input shape.
|
ValueError
|
if classifier_activation is not softmax or None when
using a pretrained top layer.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.applications.VGG16\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/applications/VGG16) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/keras/applications/vgg16.py#L45-L225) |\n\nInstantiates the VGG16 model.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.vgg16.VGG16`](/api_docs/python/tf/keras/applications/VGG16)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.applications.VGG16`](/api_docs/python/tf/keras/applications/VGG16), [`tf.compat.v1.keras.applications.vgg16.VGG16`](/api_docs/python/tf/keras/applications/VGG16)\n\n\u003cbr /\u003e\n\n tf.keras.applications.VGG16(\n include_top=True, weights='imagenet', input_tensor=None, input_shape=None,\n pooling=None, classes=1000, classifier_activation='softmax'\n )\n\n#### Reference paper:\n\n- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) (ICLR 2015)\n\nBy default, it loads weights pre-trained on ImageNet. Check 'weights' for\nother options.\n\nThis model can be built both with 'channels_first' data format\n(channels, height, width) or 'channels_last' data format\n(height, width, channels).\n\nThe default input size for this model is 224x224.\n| **Caution:** Be sure to properly pre-process your inputs to the application. Please see [`applications.vgg16.preprocess_input`](../../../tf/keras/applications/vgg16/preprocess_input) for an example.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `include_top` | whether to include the 3 fully-connected layers at the top of the network. |\n| `weights` | one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. |\n| `input_tensor` | optional Keras tensor (i.e. output of [`layers.Input()`](../../../tf/keras/Input)) to use as image input for the model. |\n| `input_shape` | optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 input channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. |\n| `pooling` | Optional pooling mode for feature extraction when `include_top` is `False`. \u003cbr /\u003e - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A [`keras.Model`](../../../tf/keras/Model) instance. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|------------------------------------------------------------------------------------------|\n| `ValueError` | in case of invalid argument for `weights`, or invalid input shape. |\n| `ValueError` | if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. |\n\n\u003cbr /\u003e"]]